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Summary of thesis

This dissertation treats two different themes. The first, addressed in Chap­
ter 1, regards the pricing of interest rate swaps. The second, studied in the
remaining two chapters, regards the implications of monetary policy for the
term structure of interest rates.

The pricing of interest rate swaps

An interest rate swap is an agreement between two parties to exchange fix
for floating interest rate payments for a certain period of time. Floating rate
payments are made at a floating-rate index, e.g. the three-month interbank
rate, while the fixed rate payment, the swap rate, is determined on the market.
The swap rate may include a compensation for credit risk depending on
the counterparty's credit quality, but in the standard agreement there is no
exchange of principal, only interest is transacted, and this effectively reduces
concerns about credit risk.

The swap spread for a given maturity is the difference between the swap
rate and the risk-free rate, measured as the yield on a government bond with
similar cash flows. If the standard swap agreement entails negligible credit risk
one might expect swap spreads to be low and stable, but market swap spreads
vary over time. There are periods when swap spreads are low in accordance
with the general theory, but there are also periods when swap spreads reach
levels that seem high. Over the past five or six years the unexplained part of
the swap spread has remained above 30 basis points over sustained periods
of time.

Understanding the determinants of the swap spread is valuable as results
can have implications for important economic decisions. For example, it is
possible that a positive swap spread follows as a result of government debt
buybacks. A reduced supply of government debt acts as to push down the
yield on government bonds while leaving swap rates unaffected. But by this
argument the reverse strategy should appear attractive for the government.
If the swap spread is high the government can raise capital through long term
borrowing, invest the amount in sort-term low risk securities, typically short­
term bank deposits, and enter a pay float - receive fix interest rate swap. With
this strategy the government is exposed to a short-term bank risk, but if the
swap spread is high the compensation for taking this risk is accordingly high.



This creates strong incentives for the government to use the swap market. In
spite of this we see long periods with significantly positive swap spreads.

The first chapter of this dissertation examines a setting where a positive
swap spread arises as part of an equilibrium in a perfectly competitive capital
market. The model is one of insurance under adverse selection. A firm that
seeks debt financing can insure itself against interest rate risk either by bor­
rowing long-term or by borrowing short-term and entering a pay fix - receive
float interest rate swap. The latter alternative allows for a partial hedge as
the firm can choose to swap only a fraction of the nominal amount.

In this setting, if firms' credit quality and interest rate risk tolerance are
correlated creditors can use the pricing of interest rate swaps as a screening
device. A low-risk firm, being a firm with favorable private information, se­
lects short-term borrowing and partial insurance. A high-risk firm, being a
firm with less favorable prospects, is by assumption also less risk tolerant. It
therefore has a higher demand for insurance and the equilibrium swap spread
is set such that the high-risk firm finds it more beneficial to borrow long-term
at a cost that exceeds the expected cost from short-term financing, but that
provides a full insurance to interest rate risk.

The positive swap spread thus separates low-risk firms from high-risk
firms. With a positive swap spread the creditor makes a profit in expected
terms on the swap transaction, but the assumption of perfectly competitive
capital markets is still preserved as the expected profit is offset by a corre­
sponding loss in the lending facility.

Monetary policy and the term structure of interest rates

Taken separately monetary policy and term structure modeling are two well­
established research areas each comprising a substantial amount of research.
But relatively few attempts have been made to integrate the two. The last
two chapters of this dissertation take the view that the conduct of monetary
policy is an essential element in the determination of the term structure of
interest rates, and that explicitly considering the role of a monetary author­
ity in the analysis has a potential of enhancing our understanding of term
structure dynamics, and its relation to macro-economic fundamentals in par­
ticular. This approach to the term structure is supported by the fact that the
analytical framework developed in the literature on optimal monetary policy
translates conveniently into a setting well suited for term structure analysis.

Chapter 2 makes the point in the simplest setting. A standard model of
optimal monetary policy is reformulated in continuous time. Combined with a
parameterized form for the market price of risk this produces a standard term
structure model with well-known characteristics. This model is estimated on
US data for the period 1987 - 2002, treating state variables as latent factors of
the term structure. The parameters that are estimated comprise parameters
describing the monetary transmission mechanism, parameters describing the
monetary authority's preferences and parameters describing the market price
of risk. Our estimation technique differs from comparable estimations in the



monetary policy literature as these typically take state variables to be directly
observable nleasures of macro-economic aggregates. The results using term
structure data are both similar and different to previous findings. The main
difference when using term structure data is that the central bank's estimated
policy is more aggressive, Le. more responsive to changes in the underlying
state variables.

This attempt to bring the two research areas together can be regarded
as a first step as the model for the monetary transmission nlechanism is
the simplest available. Agents' expectations are formed adaptively, while the
monetary policy literature emphasizes the importance of forward-looking be­
havior. Also, in work on monetary policy it is common to include lagged values
of the state variables which results in state dynamics with longer memory.
Extending the model in this direction would suggest a term structure model
with more state variables.

Chapter 3 is devoted to the zero bound on nominal interest rates. While
the zero bound is well recognized in the literature on term structure modeling,
not much has been said about term structure dynamics under the special
circumstance that the short rate is close to zero. I find the optimal monetary
policy approach to be particularly well suited for this analysis.

The chapter studies a continuous time reduced form version of the mone­
tary transmission mechanism. The monetary authority's optimization prob­
lem is formed according to two specifications, interest rate stabilization and
interest rate smoothing. For the former the optimization problem is solved an­
alytically, while numerical procedures are adopted for the latter. The chapter
then turns to study implications for the term structure under risk-neutrality.
Term structure equations are solved numerically and implications for the
term structure are discussed. Data for a low-interest rate country like Japan
for 1996 - 2003 exhibits s-shaped yield curves and yield volatility curves. This
shape is found to be consistent with a smoothing objective for the short rate.
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1. Financing clloices and the swap spread

Abstract

The pricing of interest rate swaps is examined in the presence of asym­
metric information between firm owners and creditors. A fairly standard
version of Rothschild and Stiglitz (1976) is considered. A firm borrowing
short-term is exposed to an interest rate risk. It can attain full insurance
to this risk by borrowing long-term, or it can insure itself partially by
borrowing short-term, and swapping a fraction of the nominal amount to
fixed rate payments. If firms' credit quality and interest rate risk tolerance
are correlated, creditors can use the swap spread as a screening device.
The model is consistent with observed market rates, which are difficult to
recover with standard measures of risk.

1.1 Introduction

An interest rate swap is an agreement between two parties agree to exchange
fix for floating interest rate payments for a certain period of time. Floating
rate payments are then made at a floating-rate index, e.g. the three-month
interbank rate. The fixed rate payment is the swap rate. The swap spread
for a given maturity is the difference between the swap rate and the risk-free
rate, measured as the yield on a government bond with similar cash flows,
taking the principal of the bond into account.

In recent years the swap spread has reached levels, which seem high con­
sidering the limited risk involved in the transaction. More precisely, the mag­
nitude of the swap spread can be seen as a portfolio choice anomaly. The
combined strategy of a roll-over investment in short-term risk-free bills and
a pay float - receive fix swap produces a yield, which generally is higher than
the corresponding long-term risk-free yield. The risk involved in the former
strategy seems insufficient to motivate the yield differential. Therefore, given
the existence of the former strategy, it is difficult to explain investors' high
demand for long-term government bonds or even high-rated long-term cor­
porate bonds.

o Foremost I wish to thank my adviser Mike Burkart for valuable discussions and
general guidance. I also thank Michel Habib for valuable comments. My work
has further benefited from numerous discussions with both academics at the
Department of Financial Economics at the Stockholm School of Economics and
practitioners at Swedbank Markets and AGL Structured Finance. Financial sup­
port from Bankforskningsinstitutet is gratefully acknowledged.



2 1. Financing choices and the swap spread

The present paper develops a fairly standard model of insurance under
adverse selection (Rothschild and Stiglitz (1976)). A firm can attain full in­
surance to interest rate risk by borrowing long-term, or it can insure itself
partially by borrowing short-term, and swapping a fraction of the nominal
amount to fixed rate payments. If firms' credit quality and interest rate risk
tolerance are correlated, creditors can use the pricing of interest rate swaps
as a screening device. Similarly to Rothschild and Stiglitz there is insurance
rationing. A low-risk firm, being a firm with favorable private information,
selects short-term borrowing and partial insurance. This is inefficient com­
pared to first best, where there is perfect information, since then low-risk
firms attain full insurance at no cost.

The insurance part is, that a firm borrowing short-term with frequent
refinancing is exposed to an interest rate risk. As debt is rolled over, interest
rates may have changed, and this induces variability in the firm's cash flows.
The firm can insure itself by either borrowing long-term, or by combining
short-term borrowing with a pay fix - receive float interest rate swap. In this
setting the swap spread can be interpreted as an insurance premium.

The adverse selection part is, that a firm's credit quality and its sensitivity
to interest rate fluctuations may be correlated. A firm expecting a plunge in
its credit quality, is likely to appreciate a more stable debt repayment path. A
firm expecting its credit quality to improve can tolerate a higher exposure to
interest rate risk. If the creditor takes the simultaneous role of a counterpart
in the swap agreement, she can utilize the swap spread as a screening device.
If the swap spread is set sufficiently high, the firm expecting its credit quality
to fall, will find it too expensive to hedge with an interest rate swap, and will
choose to borrow long-term. The firm expecting its credit quality to improve
demands a less complete hedge, and will benefit from borrowing short-term
and entering a limited position in a pay fix - receive float swap.

The swap spread thus separates the market. It turns out, that although
the creditor makes a profit in expected terms on the swap transaction, this
can be off-set by a corresponding loss on the lending facility. This secures
zero profit for creditors, and makes the model consistent with perfectly com­
petitive capital markets.

An early paper on interest rate swaps related to this one is Titman (1992).
Extending an observation by Flannery (1986), Titman argues, that a firm
with favorable private information has an incentive to choose short-term
debt. If it borrows long-term, it risks being locked in at an unfavorable bor­
rowing rate, even after the private information has been revealed. Short-term
borrowing allows the creditor to adjust the borrowing rate as information
becomes public, which secures a more correct pricing of debt. When borrow­
ing short-term, the firm is exposed to an interest rate risk, and this induces
a demand for combining short-term borrowing with a pay fix - receive float
interest rate swap. Though similar to the model examined here, the motive
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for high-quality firms to borrow short-term differs. In my model short-term
borrowing is purely a matter of screening.

Another closely related paper is Mozumdar (2001), which examines the
structure of swap markets in the presence of asymmetric information between
firm insiders and creditors. The main point made by Mozumdar is, that due
to limited liability of equity holders some firms may use swaps for specula­
tive purposes. This amplifies the credit component in swap, agreements, and
several institutional features of the swap market can be seen as methods for
mitigating speculation. However, the focus of Mozumdar is not on pricing.
Although pricing is examined, in equilibrium the expected profit on a swap
transaction to an investor is zero. In particular it is argued, that price based
methods amplifies the speculative intent of firm insiders. The present pa­
per focuses exactly on conditions, under which price-based methods can be
advocated. Nevertheless, the setup of the model and the general insurance
problem studied by Mozumdar, are both similar to mine. There are two prin­
cipal differences however. First, I essentially abstract from the use of swaps
for speculative purposes. Second, I allow for long-term debt.

Undoubtedly both Titman's and Mozumdar's model explain several ob­
served characteristics of the market for interest rate swaps. The Titman model
is further supported by empirical findings, see e.g. Wall and Pringle (1989),
Samant (1996), and Saunders (1998). However, in both the Mozumdar and
the Titman model the central question of the present paper remains unan­
swered: Why is the swap spread so high?

The pricing of interest rate swaps has generally been studied in a differ­
ent context. Using standard techniques for credit risk, counterparty risk has
been investigated in Duffie and Huang (1995) and Huge and Lando (1999).
The main finding is, that counterparty risk probably is not an economically
significant determinant of the swap spread. In Lang, Litzenberger and Liu
(1998) and Fehle (1999) imperfect competition among creditors results in a
positive swap spread. However, given the size of the market for interest rate
swaps, it is natural to ask if a positive swap spread can be supported even
under perfect competition.

1.2 The economic setting

Consider a firm that needs to raise $1 at date 0 to finance a project that
generates a payoff at date 2. The firm is owned by an entrepreneur, who has
no initial wealth.

1.2.1 Firm types

In the economy there are two types of firms, G for good and B for bad (or
less efficient). The fraction of G firms is Q and the fraction of B firms is



4 1. Financing choices and the swap spread

1 - a. A firm of type G generates a certain payoff G at date 2. A firm of
type B generates a payoff B < G with probability p, and a payoff zero with
probability 1 - p, also at date 2. The zero payoff is referred to as default.!

The assumption B < G is made to illustrate different sensitivity to in­
terest rate risk. The idea is, that when borrowing short-term, a firm of type
B is more vulnerable to interest rate fluctuations, even if it remains solvent.
Thus, conditional on not defaulting a firm of type B is expected to be less
solvent than a firm of type G. This assumption makes it possible for outside
creditors to separate firms.

For a risk neutral investor both types of firms have positive net present
values.

1.2.2 Information

At date 0 firm type is private information to the owner. She can not disclose
any additional information about the firm to her creditors even if she wishes
to do so. Further, for a B firm, the stochastic component is not realized until
later, and thus at date 0 the final outcome of the project is not known to the
B firm owner.

At date 1, the future payoff of the project becomes publicly known. Con­
sequently, at date 1 firm types are also revealed. Payoffs are, however, not
realized until date 2.

As it turns out, the unravel of information at date 1 is redundant. No
information need to become public until date 2.

1.2.3 Utility functions

All agents maximize expected utility at date 2 with no discounting.2 While
investors are risk neutral, firm owners are risk averse. This induces a den1and
for firm owners to hedge interest rate risk. In particular it is assumed that
u (X) == - (c + X) -2, where c is a positive constant. A vital characteristic of
this functional form is decreasing absolute risk aversion. This implies that a
type B firm, which by previous assumptions expects a lower wealth in period
2 than a type G firm, has a higher demand for insurance.3 The constant c is
needed, for utility to be well defined in case final wealth is zero. However, c
is assumed to be small (se Assumption 1.1 below).

1 A zero liquidation value is made for tractability. The assumption that G firms
never default is made for tractability. What is important is that the default
probability is smaller for a G firm than for a B firm.

2 We could allow for discounting, but since the relevant disount factor, the risk-free
rate, will be stochastic, discounting introduces complexity without adding much
economic insight.

3 Decreasing absolute risk aversion rules out the negative exponential utility func­
tion, whose coefficient of absolute risk aversion is a constant. However, power
utility is included.
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1.2.4 Available financing

Firms can commit to contract with a single creditor. Available financing is
debt and interest rate swaps. Debt can be short- or long-term. If the firm
issues long-term debt it borrows $1 and agrees to repay an amount NLT at
date 2, in case it is solvent. If the firm defaults, repayment is zero.

If the firm issues short-term debt it borrows $1 at date aand agrees to roll
over an amount NST at date 1. If the firm is solvent, the roll-over is made at
the second period risk-free interest rate. However, this rate will be stochastic,
and thus not known to participants at date O. Denoting the second period
risk-free interest rate by r, the repayment obligation at date 2, in case the
firm is solvent, is NST (1 + r). If the firm defaults, repayment is zero.

An interest rate swap, to be defined in detail below, involves swapping
an anl0unt of outstanding debt to fix or floating rate payments. The interest
rate swap has the function of an insurance against interest rate fluctuations.
This provides a way for a firm borrowing short-term, to hedge interest rate
risk. The creditor can take the simultaneous role of a swap counterpart to
the firm.

1.2.5 The interest rate process

The long-term interest rate is the yield at date 0 on a risk-free bond, maturing
at date 2. The long-term interest rate, denoted by r, is normalized to O.

The short interest rate is modeled as follows. At date 0 the short rate
for the first period, between date 0 and 1, is zero, while the short rate for
the second period is not known. At date 1, the second period interest rate,
denoted by r, is realized according to a uniform distribution on [-.cd,.cd] for
some L1 > 0.4 The distribution is independent of the bankruptcy component
for the B firm. 5

The long-term yield and the short-term interest rate, are related according
to 1 + r = E [1 + T] == 1.6

1.2.6 Swap contracts

A swap contract specifies a unit price A and a swap amount s. In the given
setting A is the swap spread. A pay fix -receive float swap of an amount s > 0
implies transferring s (r + A - T) = S (A - T) to the counterparty at date 2. If
the quantity is negative, the counterparty is indebted to the initial part. For

4 I allow for negative interest rates for analytical tractability.
5 That is, P (r < r) == P (r < riB defaults) == per < riB does not default) .
6 Under no arbitrage the long-term interest rate would be determined by 1/R ==

E [1/R]. Since absence of arbitrage is not the focus of the paper, I use the more

convenient expectation hypothesis. This is in conformity with agents' discounting
of utility (see Footnote 2).
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simplicity, I assume that the swap contract is such, that in case one of the
parties declares bankruptcy, the contract is cancelled. Although this is not
how swap contracts are written in general, the assumption keeps the analysis
more tidy, while it does not affect the qualitative results.7

1.2.7 Sequence of moves

In the presence of adverse selection the concept of competition among cred­
itors depends crucially on the specific game theoretic model applied. Here I
model contracting as a two-stage process. In the first stage creditors offer a
menu of financing options to firms. In the second stage firms choose from the
options available. Creditors are obliged to meet any request.

A financing contract offered by a creditor, specifies conditions for either
long-term or short-term financing. However, because firm owners are risk
averse, there is no hedging motive for a firm borrowing long-term to par­
ticipate in interest rate swaps. The set of financing contracts is therefore
constrained, so that interest rate swaps are only made available for firms
borrowing short-term.

Further it is assumed, that a short-term contract can only include a nom­
inal amount of debt and a swap spread. Thus it is assumed, that the contract
can not specify a particular swap amount. For the short-term contract the
borrower can select a swap position at her own choice. One could allow short­
term contracts to also include an explicit swap amount. To a certain extent
creditors can and do control borrowers' use of interest rate swaps. However,
it is reasonable to allow borrowers some freedom in their financing decision.
Also, the proposed scheme is consistent with the interpretation of the swap
spread as a marginal cost of hedging. Appendix 1.8 investigates the implica­
tions of explicitly including the swap amount in the contract.8

In summary, the set of admissible offers is given by

1. Long-ternl financing contracts NLT, where NLT E lR is the nominal
amount of debt.

2. Short-term financing contracts (NST' A), where NST E lR is the nominal
amount, and A E IR is the swap spread.

7 Procedures for the handling of interest rate swaps in the event of default, are
controlled by the ISDA (International Swaps and Derivatives Association) agree­
ments. The market value of the swap position is added to the value of the firm's
assets.

8 An alternative to the proposed two-stage procedure is to add a third stage, where
creditors are allowed to deny an observed request. However, this is effectively
equivalent to letting the creditor include a specific swap amount in the contract;
the creditor can announce that she will deny any loan application involving a
swap amount other than s. Even if creditors can not make such announcements,
firm owners can foresee that the creditor will deny any loan application, on which
the expected profit is negative. So far it has been assumed, that such contracts
are infeasible.
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1.2.8 Additional assumption

To simplify the analysis, it is assumed, that default can not occur due to
adverse interest rate movements. This abstracts from the use of interest rate
swaps for speculative purposes as in Mozumdar, which is not the focus here.
If the constant c in the utility function is small, low realizations of date 2
wealth are given a higher weight, implying that owners avoid such states
voluntarily. A sufficient assumption is therefore the following.

Assumption 1.1. c < G:l (B-21/P ) 2

1.3 The financing decision

We are essentially considering a standard model of insurance under adverse
selection. Its structure is similar to that of Rothschild and Stiglitz (1976)
and Wilson (1977). Standard results on the equilibrium apply. There are two
outcomes that candidate for equilibrium, one separating and one pooling. In
the separating outcome type G owners combine short-term borrowing with
swaps to hedge interest rate risk, and type B owners eliminate risk completely
by borrowing long-term. In the pooling outcome both types hedge interest risk
entirely. As a consequence, and as a standard result, the high-risk type, Le. a
B owner, is always fully insured. The social cost. of the market imperfection,
Le. the presence of adverse selection, is that in the separating outcome, a
G owner carries a risk, which would be more efficiently borne by an outside
investor.

It is well recognized in the literature, that in this model a perfect Bayesian
equilibrium may not exist. To address this, I decompose the analysis. First I
derive best contracts the from owners' perspective. These are the contracts,
that maximize firm owner utility, and yield zero profit to creditors. In addi­
tion, for separating contracts I restrict attention to offers, where creditors do
not cross-subsidize between firm types. Second I examine conditions, under
which best contracts can be supported in equilibrium. At this stage separat­
ing contracts with cross-subsidization are also considered.

To derive best separating and best pooling contracts, the firm owners'
financing decisions need to be examined. This is done in Sections 1.3.1 and
1.3.2 for long- and short-term contracts respectively. In Section 1.3.3 the
creditors' zero-profit condition is investigated, and with the results obtained
separating and pooling contracts can be characterized in Section 1.3.4. Sec­
tion 1.3.5 pursues a graphical illustration of the separating outcome.

1.3.1 Demand for long-term contracts

Suppose a firm of type G is considering long-term financing. The repayment
at date 2 is NLT' and wealth at date 2 is therefore XG, LT = G - N LT ,

provided NLT < G. Expected utility prior to date 2 is
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E [u (XC, LT)] =
1

(1.1)

(1.2)

When examining the financing decision for a type B firm, it is sufficient to
consider decisions conditional on the project being successful. This follows,
first because the owner's wealth in case of default will always be zero. Sec­
ond, because by Assumption 1.1 the default probability is unaffected by the
financing decision. The expected utility from borrowing long-term is, pro­
vided N LT < B,

E [u (XB , LT) Isuccess] = - 1 2
(c+B - NLT)

It can be noted at this instant, that a possible pooling contract is long­
term lending at the nominal amount NLT == lip, where p == a + (1- a)p.
For this nominal amount creditors make zero profit in expectation. In what
follows, the focus is on separating contracts.

1.3.2 Demand for short-term contracts

When analyzing short-term contracts, I start by considering demand in the
absence of interest rate swaps. Here Lemma 1.1 gives expected utility in the
presence of interest rate risk. I then introduce interest rate swaps. For a given
short-term contract firm owners' optimal swap positions are given in Lemma
1.2, and implied expected utilities are given in Lemma 1.3.

Suppose therefore initially, that swaps are not available. The repayment
from a firm to its creditor at date 2 is NST (1 + T). For a type G firm date 2
wealth is, provided NST (1 + T) < G,

XC, ST == G - NST (1 + T)

== G - NST - rNST

The owner's financial position can be divided into two parts, a fixed quantity
G - NsT , which is expected wealth, and a quantity at risk NST, which is the
amount exposed to interest rate risk. The size of N ST depends on wether a
separating or a pooling contract is considered. To infer expected utility, the
following lemma is useful.

Lemma 1.1. If date 2 wealth is

X= C-rD

where C > 0, D > 0 and C - i1D ~ 0, then expected utility prior to date 2
is

1
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Using Lemma 1.1, expected utility prior to date 2 for a type G firm owner
is, provided NST (1 + Ll) < G,

E [u(Xa,ST)] =
1

Notice the resemblance with utility when borrowing long-term. The denom­
inator is reduced by the term Ll2 N§T as a result of the interest rate risk
exposure.

In a similar way utility for a type B owner borrowing short-term, condi­
tional on the project being successful, is, provided NST (1 + Ll) < B,

E [u (XB, ST) Isuccess] =
1

(c + B - NST)2 - Ll2 N§T

Because B < G, and as a result of decreasing absolute risk aversion, a type
B owner has higher disutility of interest rate risk exposure. This opens the
possibility of separating contracts. In the separating outcome B owners bor­
row long-term, and G owners borrow short-term. Assuming creditors make
zero profit in expectation, the long-term nominal amount is then N LT = l/p,
while the short-term nominal amount is NST = 1. Type B owners have no
incentive to select short-term financing, if the cost of interest rate exposure
is sufficiently high. Type G owners have no incentive to borrow long-term, if
the difference between short- and long-term nominal amounts is sufficiently
high.

Note that the B owner is fully insured. The G owner separates from B
firms at the cost of a full interest rate risk exposure. If it was possible to
partially insure against interest rate risk, this could potentially reduce the
cost of separation for the G owner. We are thus naturally led to consider
interest rate swaps.

Suppose therefore, that interest rate swaps are made available. The credi­
tor offers a contract (NsT , A), where NST is the nominal amount and A is the
swap spread. The firm owner chooses a swap position S at her own preference.
For a swap position s, the transfer from the firm to its creditor at date 2 is

N ST (1 + T) + S (A - T) = NST + SA + r(NsT - s)

This means that an amount N ST - S is exposed to interest rate risk. The
quantity N ST + SA is the expected repayment. For a type G firm, the owner's
financial position at date 2 is, provided the firm is solvent,

XC, ST = G - NST - SA - r(NsT - 8)

If the conditions of Lemma 1.1 are satisfied, the owner's expected utility prior
to date 2 is
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E [u (XC, ST)] =
1

(c + G - NST - 8>..)2 - Ll2 (NST - 8)2
(1.3)

Given N ST and >.., the owner now chooses that swap amount, which maximizes
(1.3). The decision for a type B owner is similar. The computations are carried
out in the appendix, and the result is given by the following lemma.

Lemma 1.2. For sufficiently small >.. > °and NST > 0, the optimal swap
positions for the respective firm owners are

1 N ~ c+G-NST
Be = -- ST - -------

1-~ 1-~ >..
1 N ~ c+B-NsT

BB = -- ST - -------
1-~ 1-~ >..

where ~ = A2/ Ll2 .

As A approaches zero, Be and 8B approach NST. If >.. = 0, the price of
hedging is zero, and firm owners hedge interest rate risk completely. As A
increases, the optimal swap position decreases, and for sufficiently high>" it
may become negative. In this case the expected profit to be made on the swap
transaction, outweighs the disutility of interest rate risk exposure. Although
this may be unlikely to represent a real life event, it has no fatal implications
for the model.

As functions of >.., Be and BB are the demand functions for the respective
owners. Figure 1.1 depicts these functions for a given value of NST. Since for
A > 0 the optimal swap position for a type B firm is larger than for a type
G firm, it will be less beneficial for a type B firm to borrow short-term. The
mechanism, to be utilized below, is that this additional cost can be controlled
by the level of the swap spread, to support separation.

0.0 16 I~-=-----,------r------,,...-----.-------,

0.014[····......... g
0.012~... , .....

0.0 I """"

0.008 -'.
',~ -"""

0.006 - ~ -'_'"

0.004

0.002

0.80.6
o'------------.---'----'-------'-----=
o 0.2 0.4

Figure 1.1. Demand for swaps.
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Given Lemma 1.2, expected utility can be rewritten. Substituting for the
optimal swap positions into the utility functions, gives implied expected util­
ities for a given swap spread. The result, again derived in the appendix, is
given by the following lemma.

Lemma 1.3. For sufficiently small A > °and NST > 0, implied expected
utilities for the respective firm owners, when swaps are available, are

E[u(X )] --(1-A2 /L12
) 1

G,sr - (c+G-(1+"\)Nsr )2

E [u (XB, ST) Isuccess] = - (1 - ,\2/Ll2) 1 2
(c+B-(l+"\)Nsr )

Note that as A approaches zero, implied expected utility is similar to
expected utility when borrowing long-term. This follows, because at a zero
swap spread the firm attains a full hedge at zero cost. Consequently, the pool­
ing outcome NLT = l/p has a short-term equivalent in (NsT , A) = (1/15,0),
where 15 = a + (1- a)p.

1.3.3 The zero profit condition

With separating contracts type B owners choose long-term financing, and
type G owners choose short-term financing. A creditor can offer both short­
and long-term contracts. The expected profit on a long-term contract is

1rLT = NLT - l/p

and the expected profit on a short-term contract is

1rST == NST + ASc - 1

If creditors offer contracts to both types of firms, the zero profit condition
reads

a1rST + (1 - a) 1rLT = 0

In principle one could allow for cross-subsidization between short- and long­
term contracts, so that for exanlple 1rLT > 0 and 'IfST < O. However, for the
moment attention is restricted to offers without cross-subsidization.9 Thus,
for the separating outcome the relevant zero-profit conditions are

N LT == l/p

NST + ASG == 1

Note, that in the short-term contract, there may be cross-subsidization be­
tween the swap position and the lending facility. If the swap spread is positive,

9 Separating contracts with cross-subsidization are discussed in Section 1.4.
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the creditor makes an expected profit on the swap transaction, which is off-set
by a corresponding loss on lending.

Below it will be convenient to have the zero-profit conditions, conditional
on G owners selecting their optimal swap positions se. Substituting for Se
from Lemma 1.2, the second zero-profit condition can be rewritten. The cal­
culations are carried out in the appendix, and the result is given by Lemma
1.4.

Lemma 1.4. The zero-profit conditions for long-term and short-term lending
can be written as

N LT = lip

(1 + A) NST == 1+ A2/d 2 (c + G - 1)

1.3.4 The separating and pooling contracts

To start with I try to support separation. Thus I seek an outcome, where type
B firms borrow long-term, and type G firms borrow short-term and use in­
terest rate swaps. I assume that firm owners select their financing optimally
according to Lemma 1.2, and that creditors make zero profit according to
Lemma 1.4. For long-term financing expected utilities are obtained by sub­
stituting for the zero-profit condition N LT = lip into (1.1) and (1.2). For
short-term financing, Lemmas 1.3 and 1.4 are combined.

Lemma 1.5. For sufficiently small A > 0 it holds that

E[U(XC,ST)] = -(1-1\:) (C+G-l-~(C+G-l))2

E [u (XB , ST) Isuccess] = - (1 - 1\:) 1 2
(c + B-1 - ~ (c + G - 1))

It is straightforward to show, that for a G owner borrowing short-term,
utility is decreasing in A. Thus, if a separating outcome can be supported for
several values of A, G owners will strictly prefer the contract corresponding
to the minimal A.

For a separating equilibrium the incentive compatibility constraints (Ie
constraints) must be satisfied. The first Ie constraint states, that a type
G firm owner borrowing short-term, should have no incentive to choose the
long-term contract. The second Ie constraint states, that a type B firm owner
borrowing long-term, should have no incentive to seek short-term financing.
That is

ICI E[u (XC, ST)] ~ E[u (XC, LT)]

IC2 E[u (XB , LT)] ~ E[u (XB , ST)]
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Heuristically, a type G owner has lower disutility of borrowing short-term.
Thus, if the swap spread is set such, that a type B owner is just indifferent
between long-term and short-term financing, then a type G owner should
be better off borrowing short-term. A natural guess is therefore, that the
separating swap spread should be such, that IC2 holds with equality. leI
should then be satisfied automatically. This turns out to be correct, and we
can state the following theorem.

Theorem 1.1. There is a separating outcome, where firms of type B borrow
long-term, and firms of type G borrow short-term. The long-term nominal
amount is NLT = lip, and the short-term nominal amount NST is given by

NST + ASa = 1

where Sa was defined in Lemma 1.2, and the swap spread A satisfies

,\2 1 V( 1)2- = a - _b2
- a - -b2 - a2 + b2

~2 2 2

with A > 0 and

c+B-I
a=----

c+G-l
b= c+B-1Ip

c+G-I

It remains to characterize the pooling contract. This has already been
done in Sections 1.3.1 and 1.3.2, and we can thus formulate Theorem 1.2.

Theorem 1.2. There are two pooling outcomes, corresponding to long- and
short-term contracts respectively. In the former creditors offer both firms long­
term financing at the nominal amount NLT = lip, where p = a + (1 - a) p.
In the latter creditors offer both firms short-term financing at (NsT , A) =
(lip, 0). In this case firms use interest rate swaps and hedge interest rate risk
completely.

1.3.5 A graphical representation

This section pursues a graphical illustration of the mechanism at work in
the separating outcome. To start with, I examine short-term contracts in the
absence of type B firms. For a type G firm, the demand function Sa, given in
Lemma 1.2, is a function of A and NST. This function thus defines a surface
in (NST' A, s)-space. For the supply side I consider those contracts, on which
a creditor makes zero profit in expectation. From Section 1.3.3 the zero-profit
condition is given by

NST+sA=l
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which also defines a surface in (NST ,'\, s)-space. The two surfaces are de­
picted in Figure 1.2. Since the creditor is constrained to offer contracts on
the form (NST' ,\), the set of admissible zero-profit contract offers is effec­
tively constrained to the solid line in the figure. If the creditor could offer full
triples (NST, '\, B), the set of admissible zero-profit contract offers would be
the entire zero-profit surface.

Figure 1.2. Adnlissible contracts.

Next allow type B owners, to choose short-term contracts also. The de­
mand function is given by SB, which similarly to Be defines a surface in
(NST ,'\, s)-space. The alternative for B is to borrow long-term. Therefore,
the iso-utility function corresponding to the implied utility of borrowing
long-terlll is also considered. The iso-utility function represents combinations
(NST, '\, s), between which B is indifferent. For a suitable utility level, this
will give a representation of the incentive compatibility constraint. Com­
paring utility derived from long- and short-term financing respectively, the
relevant iso-utility surface is given by

(c + B - NST - S,\)2 - L12 (NST - s)2 = (c + B - 1/p)2

Figure 1.3 illustrates SB and the iso-utility surface. By the definition of BB,

at each intersection of the two surfaces S B characterizes the maximum of the
iso-utility function along the S axis. Further, for a given NST the firm owner
prefers a contract with as low swap spread as possible. Thus, a short-term
contract (NsT ,'\) is preferred, if the corresponding SB is below the iso-utility
surface. To keep type B owners borrowing long-term, the creditor will have
to offer such contracts (NST' ,\), that BB is above the iso-utility surface.
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0:997

Figure 1.3. The incentive compatibility constraint.

To now illustrate the equilibrium, Figures 1.2 and 1.3 are combined. In
Figure 1.4, the pale surfaces are the demand functions for the respective
firms, where SB has been 'cut off' for transparency. The dark convex surface
is the zero-profit condition. Its intersection with the Se surface, the line with
the filled circles, is the set of admissible zero-profit contracts. I refer to this
as the AC line (for admissible zero-profit contracts).

The dark concave surface is the firm B iso-utility function. Its intersection
with the SB surface, given by the line with the filled squares, illustrates those
contract offers (NST' >..), for which a type B owner is indifferent to borrowing
long-term. This line is referred to as the IC line (for incentive compatibility
constraint) .

The black dashed line is plotted for the equilibrium value of (NsT , >..);
it is parallel to the s-axis. It connects the AC line and the IC line. For a
lower value of >.. along AC, the IC constraint is violated. For a higher value
of A along AC, a potential outside creditor can attract all type G firms, by
offering a contract along AC corresponding to a lower A.
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0.998

N

Figure 1.4. The separating contract.

It has been assumed, that creditors can only offer contracts on the form
(NST' .\), and thus not full triples (NST,.\, s). If such contracts are allowed,
it alters the outcome. The set of admissible zero-profit offers is then no longer
constrained to the AC line, but is the entire zero-profit surface. To support
separation in this case, the creditor still has to offer contracts above the iso­
utility surface. Possible contracts are shown in the figure by the line with the
filled triangles. However, when extending the set of admissible contracts, we
do not find a unique solution - the type G firm owner is indifferent between
the contracts along the triangles line. This matter is discussed further in
Appendix 1.8.

1.4 Equilibrium

In the Rothschild and Stiglitz model a pooling perfect Bayesian equilibrium
can never be supported. This translates directly to the current setting. Given
the difference in risk tolerance, it is possible to offer a short-term contract,
which leaves some risk exposure. Setting the level of risk exposure such, that
type B owners are indifferent, type G owners are better off choosing the new
contract. This results in expected losses for the initial contract. However, the
deviating contract offer can not be part of an equilibrium itself.

By contrast the separating outcome is more robust. Although it sometimes
can be broken by the pooling contract, there are parameter constellations for
which the separating outcome remains intact. This will be the case if the
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fraction of type G firms is sufficiently small. Then the potential deviation,
a long-term contract at the nominal amount NLT = l/p, is close to the
existing long-term contract, and the potential gain for type G owners from
full insurance is small.

Theorem 1.3. Assume that separating contracts with cross-subsidization are
not allowed. If

p 1
a~------

" 1-p1-~

then a separating perfect Bayesian equilibrium [see Theorem 1.1} can be sup­
ported.

Next we allow for separating contracts with cross-subsidization between
firm types. Doing that, it is for some parameter values possible, to break
the separating outcome in Theorem 1.1, by a separating contract with cross­
subsidization.

To see how this works, consider the separating outcome without cross­
subsidization. The swap spread was set such, that type B owners were just
indifferent between short- and long-term financing. With cross-subsidization,
it is possible to maintain zero profit, while lowering the long-term nominal
amount NLT and increasing the short-term nominal amount NST accordingly.
This contract is strictly preferred by type B owners, while type G owners
at the initial stage are worse off. However, since NLT is lowered, the Ie
constraint is relaxed, and it is consequently possible to lower the swap spread.
This gives type G owners a higher degree of insurance. As a result the short­
term contract (NST' A) resulting under cross-subsidization, may indeed be
preferred by type G firms to the initial short-term contract without cross­
subsidization.

Although the new contract breaks the existing outcome, it may not in
itself be part of a perfect Bayesian equilibrium. Since the creditor makes a
positive profit on one type of borrower, it is possible for an outside creditor to
approach only this borrower. This distorts the fraction of profitable contracts
in the initial offer, and results in negative expected profits.

Somewhat comforting, there are parameter values for which the separating
outcome in Theorem 1.1 is intact. If the fraction of type G firms is high, then
a small increase of NsT , allows for a large reduction of NLT . With the implied
relaxation of the Ie constraint, the swap spread can be lowered more. Thus a
small increase in the short-term nominal amount implies a significantly higher
degree of risk coverage. On the other hand, if the fraction of type G firms
is low, then a large increase of the short-term nominal amount, yields but
a marginally higher degree of insurance. In this case the cross-subsidizing
contract does not improve type G utility. Consequently, if the fraction of
type G firms is low, then the separating outcome in Theorem 1.1 can still be
supported.
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To guarantee the existence of an equilibrium for general parameter con­
stellations, it is common to alter the equilibrium concept. One way was pro­
posed by Riley (1979). The idea is, to constrain the set of admissible deviating
strategies in the equilibrium. Admissible deviations are those, which remain
profitable even after a third deviating profitable outside offer is made. The
intuition behind this equilibrium concept, is that possible rents from the de­
viating strategy, would be too short-lived to make a significant profit overall.
Under the Riley equilibrium the Rothschild and Stiglitz model has a unique
equilibrium, being the separating equilibrium, with no cross-subsidization
between firm types. This result translates directly to the present setting.10

Theorem 1.4. Assume that separating contracts with cross-subsidization are
allowed. For general parameter constellations there is a unique Riley equilib­
rium. The equilibrium is the separating outcome given in Theorem 1.1.

1.5 Conclusion

This paper has investigated how a positive swap spread may result on per­
fectly competitive capital markets. Similar to Titman (1992) and Mozumdar
(2001) the model relies on financial distress costs and asymmetric informa­
tion. However, in the present paper lenders use the swap spread to screen
firms' credit quality. A positive swap spread puts a cost on hedging interest
rate risk, which limits firms' use of interest rate swaps. As a consequence
there is rationing of interest rate swaps.

A key feature of the model is that firms with lower expected cash flows
have higher internal costs related to interest rate uncertainty. This makes
interest rate hedging a higher concern, which may be utilized by creditors to
separate the market.

One testable implication of the model is, that a higher degree of interest
rate uncertainty, should imply a higher swap spread. Further it may be pos­
sible to test for insurance rationing. Extending the model to a multi-period
setting, may produce implications for the term structure of swap spreads.

10 An alternative was proposed by Wilson (1977). There the set of deviating strate­
gies are those, which remain profitable even after existing strategies, which make
a loss due to the deviation, are withdrawn. Depending on parameter values, a
Wilson equilibrium may allow for cross-subsidization in separating contracts.
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1.6 Appendix. Summary of variables and parameters

G
B
p
a
p
X
u(X)

1TLT

1TST

'"a
b

c
d

~

safe payoff for type G firm
payoff in case of success for type B firm
type B firm probability of success
fraction of type G firms
average success probability = a + (1 - a) p
date 2 wealth to firm owner
utility function = - (c + X)-2

positive constant < G~l (B-21/P ) 2

nominal amount on long-term debt
nominal amount on short-term debt
long-term risk-free rate = 0
second period short risk-free rate
size of short rate distribution
swap spread
creditor's expected profit on long-term contract
creditor's expected profit on short-term contract
>..2/~2
c±B-l
c+G-l
c±B-ljp
c+G-l
Ijp-l
c±G-l

c
c+G-l
l/fi-l
c+G-I

1.7 Appendix. Proofs

1.7.1 Lemma 1.1

Suppose that X = C - rD, where C > 0, D > 0 and C - L1D ~ o. The
owner's expected utility can be written as

E [u (X)] = -E [X- 2
]

= _jLl (C _ rD)-2 dr
-L1 2~

1 [ 1 ]L1
=-2~D C-rD -L1

1 (1 1)
= - 2i1D C - L1D - C + i1D

1

(1.4)
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1.7.2 Lemma 1.2

To find the optimal swap position, I look at the first order condition. A type
G firm is considered for illustration. The decision for a type B firm is similar.
Throughout it is assumed that 0 < A < Ll. The financial position at date 2 is

Xe,ST = G - NST - As - r(NsT - s)

If the conditions of Lemma 1.1 are satisfied, then we have expected utility
according to

E[U(XC,ST)] =-C2_~2D2

with

C = c + G - N ST - As

D = NsT-s

In this case, differentiating expected utility with respect to s, yields

Setting the first derivative equal to zero, gives the first order condition

The second derivative is

(1.5)

(1.6)

(1.7)

At the optimum the second term is zero, and since A < Ll the first term is neg­
ative. The first order condition thus characterizes a maximum. Substituting
for C and D from (1.5) into the first order condition, we obtain

-A (c + G - NST - sA) + Ll2 (NsT - s) = 0

Solving for B, the optimal swap position Be should satisfy

L12 N .x? c+G-NsT
Be = Ll2 _ A2 ST - Ll2 _ A2 A

To validate the use of Lemma 1.1, it should be verified, that for this choice of
s, it holds that C > 0, D > 0 and C - LlD ~ O. It is sufficient to check D > 0
and C - LlD ~ O. For D, note that Se can be seen as a weighted sum between
N ST and (c + G - NST ) / A with a negative weight on the latter. Therefore
we will have Be < N ST if and only if
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c+G-NST N
A > ST

which holds exactly as

(1 + A) NST < C + G

This will hold for sufficiently small NST and A, as stated in the lemma. It
remains to verify that C - L1D ~ o. That is

C - L1D == G - NST - ASa - L1 (NST - sa) ~ 0

For small values of A, Sa is close to NST, which brings C - L1D close to
G - N ST. For sufficiently small N ST this quantity will be positive. This
shows, that for the proposed value of Sa, the conditions of Lemma 1.1 are
satisfied.

To close the argument, it should be verified, that when the conditions
in Lemma 1.1 are not met, no other swap position attains the same level of
utility. If default is possible due to adverse interest rate realizations, then
there is a r ~ L1, such that

C-c-fD=O

For a swap position sufficiently large in magnitude, provided A < Ll, this can
always be set to hold. Further it is evident, that for A > 0 a negative swap
position will be more beneficial than a positive. Expected utility if default is
possible, is given by

[ (-)] jT 1 dr i,d 1 dr
E u X = - -L\ (C _ rD)2 2.<:1 - r c2 2.<:1

1 [ l]T 1 1 ,d
= - 2.<:1D C - rD -L\ - 2.<:1 c2 [rJr

1( 1 1) 11
= - 2LlD C - r D - C + LlD - 2f1 c2 (d - r)

1 (1 1) 111= - - - - - - - - (LlD - C + c)
2L1D c C + L1D 2Ll c2 D

1 1 ( c C - L1D)
= - 2L1D ~ 1 - C + LlD + 1 - c

It can be shown, that for sufficiently small c the derivative with respect to
s is negative for all 8 < NsT , which implies that a local minimum will not
exist. As the swap position is set to be negative and large in magnitude, C
is in the order of -SA, and D is in the order of -8. Thus
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lim E [u (X)] = lim _ 1 ~ (1 _ c + 1 _ -AS + LlS)
81-00 81-00 2 (-Lls) C -SA - Lls c

1 Ll- A
==-2c2~

1
== - (1 - ,\/~) 2c2

This is the case for speculative swaps. The owner chooses a negative swap
position arbitrarily large in magnitude. The downside of date 2 wealth is
bounded below by zero because of limited liability, while the upside is un­
bounded. However, because of the shape of the utility function, it will be
possible to abstract from such behavior. In the proof of Theorem 1.1 below
it is shown, that under Assumption 1.1 speculative swaps can be ruled out
in equilibrium.

1.7.3 Lemma 1.3

(1.9)E[u (XC,ST)] =

As in the previous proof, a type G firm is considered for illustration. Implied
expected utility is obtained by combining Lemmas 1.1 and 1.2. By the first
order condition (1.6), C = 112 D/A. We thus have

E[u(XC,ST)] = (L12DI).)_~2D2 (1.8)

1 1 1
- - 112 (D/,\)2 112 _,\2

From Lemma 1.2 D / A is calculated as

1
D/,\ == ~ (NsT - so)

_~ A2 (-N C+G-NsT )
- A,L12 _ A2 ST + A

1
~2 _ >.2 (c + G - (1 + >.) NST)

and substituting for D/A into (1.8), yields the implied expected utility

112 _,\2 1

1.7.4 Lemma 1.4

For a separating equilibrium the zero-profit condition for short-term contracts
is

NST + ASc == 1
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Substituting for Se from Lemma 1.2, yields

L12 A2

NST + 2 2 ANST - 2 2 (c + G - NST) = 1
~-A L1-A

and collecting terms in NST,

L12 A2

2(1+A)NsT=1+ 2 2(c+G)
L12 - A L1 - A

Finally, multiplying with (L12
- A2

) /112 , it can be concluded, that

(1 + A) NST = 1+ (A/L1)2 (c + G - 1)

which was to be shown.

1.7.5 Theorem 1.1

(1.10)

The proof is divided into four parts. The first part finds a A, for which IC2
holds with equality. The second part shows, that for this choice of A the Iel
automatically is satisfied. The third part shows that the solution is valid in
the sense, that for an interior solution, Le. for Se given by (1.7), default can
not occur due to adverse interest rate realizations. The last part shows, that
the interior solution is the global solution.

Part 1. Let ~ = ~~. If IC2 binds, then

1
- (1-~) -(c-+-B---1---~-(-c+-G---1-)~)2

Define

1

(c+ B _1/p)2
(1.11)

c+B-1
a= c+G-1 (1.12)

b = c+ B -lip
c+G-1

Dividing the denominator on each side of (1.11) by (c + G - 1)2, we then
have

(c+G-1)2 1

(c+B-1-K(c+G-l))2 = (a_~)2

1 1
- (1- K) --

(a _ ~)2 b2

which can be rearranged to

/'1,2 - 2 (a - ~b2) /'1, +a2 - b2 = 0

(1.13)

(1.14)
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Solving for Ii, yields

~ = a - ~b2 ± J(a - ~b2 ) 2 - a2 + b2

For this choice of ~ IC2 is satisfied with equality. It is now verified that the
solution is valid, in the sense that ,\ is a real number. First, K is a real number,
since

where the last inequality follows from the fact that a < 1. Second, K must be
positive for ,\ to be a real number. This will clearly be the case if we select
the positive root. However, since

1 2 1
a - -b > a - -b > 0

2 2

and

the negative root also gives a positive Ii. Choosing the negative root, secures
a lower value of '\, which is strictly preferred by type G firm owners. Con­
sequently the negative root should be chosen. Finally, since a < 1 it follows
that ~ < 1, which in turn implies that ,\ < Ll. Concluding we have

~ = a - ~b2 - J(a - ~b2) 2 - a2 + b2

Verifying that for the implied value of A, both Be and BB result in non­
negative financial positions at date 2 with probability 1, is left to part 3
below. c-

Part 2. It is now verified, that the firm G Ie constraint is satisfied at the
proposed swap spread. To do this, it is shown that

1 1
-(1-~) 2 ~- 2

(c+G-1-~(c+G-l)) (c+G-l/p)

Multiplying with (c + G - 1)2 and introducing a new variable x, the following
inequality should be satisfied for x == 1

1 1
-(1-~) 2 ~- 2

(x-~) (x-c)

where c = a-b, and a and b were defined in (1.12). Since ~ < 1, the inequality
can be rewritten as
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(x - ~)2 - (1 -~) (x - e)2 ~ 0

Defining

I (x) == (x - ~)2 - (1 -~) (x _ c)2

we have that I (a) == O. It will be sufficient to show that f (1) ~ O. Now f is
a second degree polynomial in x, with a positive coefficient for x 2 • Thus, if
I' (a) > 0, then I (x) > 0 for all x > a. Since a < 1, it will be sufficient to
show that f' (a) > o. The derivative of f is given by

f' (x) == 2 (x -~) - 2 (1 -~) (x - c)

and since f (a) == 0 we have

(a - ~)2 == (1 _ ~) (a _ e)2

Taking the square root, and recalling ~ < a and e < a, this gives

(a-~) == ~(a-e)

which, since 0 < ~ < 1, certifies that

(a-~) > (l-~)(a-e)

ensuring I' (a) > O.
Part 3. It remains to show, that for ~ given by (1.13) both SG and SB

produce non-negative financial positions at date 2. It should thus be verified
that

Xe,min == G - NST - ASG - L1 (NST - sG) ~ 0

XB , min == B - NST - ASB - 11 (NST - SB) ~ 0

I start by rewriting the expression for XG,min. For G - NST - ASG it holds,
that

(
1 ~ c + G - N ST )G - NST - ASG == G - NST - A --NsT - -------

1-~ 1-~ A
1

== G - N ST - 1 _ ~ (ANST - ~ (c + G) + ~NST )

1 ~

== 1 _ ~ (G - (1 + A) N ST) + 1 _ ~ c

and for N ST - Se, that

(
1 ~ C+G-NST)

NST - SG == NST - --NST - -------
1-~ 1-~ A

== __~_ (NS
T

_ C + G - NsT )
1-~ A
~ 1

== - --- ((1 + A) NST - G - c)
l-~A

~ 1 ~ 1
== 1 _ ~ ~ (G - (1 + A) NST) + 1 _ ~ ~ c
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Thus

- 1 ( Ll) K ( Ll)XC,ulin = 1- '" (G - (1 +..\) NST) 1- KA" + 1- '" 1- A" c

A similar calculation for XB , min yields

Evidently XB,min < XC, min, so it will be sufficient to show that XB,min ~ o.
Multiplying the last expression with 1~~ > 0, the relevant condition reads

(B - (1 + A) NST) ~ (~ - 1) + (1 - ~) c ~ 0

or, dividing by Ll/A-I> 0,

L1
(B - (1 + A) NST) A" - c ~ 0

Inserting the zero-profit condition (1.10), yields

(
2 2 ) LlB-1-..\/Ll (c+G-l) A"-c~O

which, after rearranging, becomes

B-1 ..\2 ..\ c
-----2----
c + G - 1 Ll2 ~ .d c + G - 1

Using the expressions for a and b from (1.12), and defining

d= c
c+G-l

the condition can be rewritten as

a-d-~~%d

Since", < 1 it will be sufficient, that

a - '" ~ 2d

Using the expression for K, it will be sufficient to have

(1.15)
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That is

(
C+B-1/P)2

4
c

c+G-1 ~ c+G-1

The left hand side is increasing in c. It will be sufficient to have

(
B - 1/P)2 ;;:: 4_c_
G-1 G-1

That is

~ _1_ (B _1/P )2
c~G_1 2

and Assumption 1.1 certifies, that the inequality is satisfied.

Part 4. It is now demonstrated that speculative swaps are suboptinlal in
equilibrium. In the proof of Lemma 1.2 it was shown, that as the swap position
approaches -00, it holds that

This holds for both firm G and firm B owners. It is now demonstrated that in
equilibrium the owners' expected utility for S = SG and S = SB respectively
are higher. It will be sufficient to show that

_ (1 - A/L1) _1 ~ _ (1 _ ~) 1 ___=_

2c2 ~ (c+B-1-~(c+G-1))2

With notation given above, this is equivalent to

or, after multiplying with 1 - ~ and rearranging,

Since ~ < 1, it will be sufficient to have

a - ~ ~ 2d

This is exactly condition (1.15), which in the previous section was shown to
hold under Assumption 1.1. This completes the proof.
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1.7.6 Theorem 1.3

This appendix derives the condition on a, under which the separating out­
come can be supported as a perfect Bayesian equilibrium. The separating
outcome can be sustained, if it can not be upset by the pooling contract.
The pooling contract is strictly preferred by type B owners, but to break the
separating outcome, it will be necessary and sufficient, that it is preferred
by type G owners also. The separating contract can thus be supported as an
equilibrium if and only if

1 1
- (1 -~) 2 ~ - 2

(c+G-1-~(c+G-1)) (c+G-l/p)

Dividing the denominator on each side by (c + G - 1)2, this is equivalent to

where ~ == cl~~-=-ll . Rearranging we get the condition

or equivalently, since ~ < 1 and ~ < 1,

Using

p == a + (1 - a) p == p + a (1 - p)

this can be written as

1
p+a(l-p) ~ ~

1- 1- K

and solving for a we obtain the necessary and sufficient condition

p 1
a~------­
"l-pl-~

1.8 Appendix. An alternative contracting scheme

This appendix investigates the implications of letting the swapped amount
be explicitly incorporated in the contract. Thus for short-term contracts, in
stead of just offering (NsT , A) and letting the firm owner choose her optimal
S, creditors now offer a full triples (NsT , A, s).
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The previous comparison with the Rothschild and Stiglitz framework still
applies. There is a separating equilibrium, where firms of type G borrow
short-term, and firms of type B borrow long-term.

However, explicitly incorporating 8 in the contract, affects the proper­
ties of the equilibrium. A larger set of contracts is made available, and this
gives a more efficient outcome. At the same time multiple equilibria arise. In
particular the swap spread becomes indeterminate.

To see this, recall from Section 1.3.2, that the financial position at date
2 of a type G firm borrowing short-term, is given by XC,ST == G - NsT ­
SA - r(NsT - s). In equilibrium creditors make zero profit on each type of
borrower, which for short-term financing contracts implies that NST+SA == 1.
Substituting for NsT , the financial position at date 2 is then

XC, ST = G - NST - SA - r(NsT - s)

== G - 1 - r(1 - 8 (1 + A))

To interpret this, note that the fair expected debt repayment from firm G to
the creditor is unity. Thus s (1 + A) defines that fraction of the repayment,
which is set to be at a fixed rate. In the previous analysis the swap spread
effectively played the role of the fixed rate, which could be varied to control
the firm owner's behavior. Here this fixed rate is constrained to be zero,
and the creditor controls the firm's interest rate risk exposure by varying
the level of S (1 + A). However, the firm owner is indifferent between those
combinations of s and A, for which s (1 + ,\) is constant. The equilibrium will
specify a level of s (1 + A), such that type B firm owners are just indifferent
to mimicing the short-term financing strategy. While this defines a unique
value of S (1 + A), there will be an indeterminacy regarding the swap spread.

To find the separating value of s (1 + A), set the IC2 to hold with equality.
That is,

1

(c + B - 1)2 - L12 (1 - s (1 + A))2 ==

Solving for (1 - s (1 + A))2 yields

1

(c+B-l/p)2

2 1 ( 2 2)(1-8(1+A)) == L12 (c+B-1) -(c+B-l/p)

and!!

1 / 2 2s(l+'\)=I- L1 (c+B-l) -(c+B-l/p)

We can now state the following theorem.

11 The solution is given with a negative sign of the square root, which ensures that
the date 2 financial position is non-negative.
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Theorem 1.3.1. There is a separating Riley equilibrium, where firms of type
G borrow short-term and use swaps to hedge interest rate risk, and firms of
type B borrow long-term and stay away from the swap market. The long-term
contract is given at the nominal amount N LT = lip. The short-term contract
is given by (NST, A, s), where s and A are related according to

1 V 2 2s(l+A)=l- L1 (c+B-1) -(c+B-1Ip)

and the short-term nominal amount is determined by NST + AS = 1.
Though Theorem 1.3.1 does not specify a particular swap spread, it shows

that the model is consistent with any swap spread. A positive swap spread
does not necessarily imply that markets are incompetitive. Creditors making
expected profits on swap contracts, can make corresponding losses on lending.

However, allowing creditors to include S in the contract, affects the ef­
ficiency of the equilibrium. In the previous analysis, when s could not be
explicitly incorporated, the expected utility for a type G owner in equilib­
rium was

1 1

where AILl was defined in Theorem 1.1. When allowing for full triples, implied
utility is

1

It is now demonstrated, that utility in the latter case is higher. It will be
sufficient to show, that

This is equivalent to

A2/Ll2~ (C+B-1)2 _ (C+B-1 Ip )2
c+G-l c+G-1

or in terms of a and b from Theorem 1.1,

A2ILl2 ~ a2
- b2

Substituting further for A2/L12 from Theorem 1.1, yields

J( )21 2 1 2 2
a - 2"b - a - 2"b2 - a2 + b2 ~ a - b
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Isolating the square on the right and side and squaring, it will be sufficient
to show

Cancelling the first term on each side, and dividing by a2 - b2 > 0, yields the
equivalent

Cancelling b2 , this can be written as

Since a < 1, this inequality will be sharp. Tracking the argument backwards
it follows, that allowing for full triples (NST, A, s), implies a strictly higher
degree of efficiency in the separating equilibrium.

Graphically the loss in efficiency can be illustrated by revisiting Figure
1.4. When creditors could only offer pairs (NsT , A), they choose the offer
corresponding to the dashed black line - that value of (NST' A) where the
corresponding values of Sc and BB intersect with the AC and IC lines re­
spectively. When creditors are allowed to include s, and offer contracts on
the form (NST' A, s), it is possible to offer contracts along the line with the
filled triangles. This gives firm G owners a higher risk coverage at a lower
price, and is thus strictly preferred to the previous outcome. It is evident
from the figure, that the triangles line by construction is parallel to the firm
B iso-utility surface. For the same reason it is parallel to firm G iso-utility
surfaces. We can therefore not pin down a unique value of the swap spread.
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2. Monetary policy and the yield curve

Abstract

This paper integrates two branches of research, optimal monetary policy
and no-arbitrage yield curve modeling. Transforming a standard model of
optimal monetary policy to a continuous time setting produces a stan­
dard interest rate model with well-known characteristics. The model is
estimated to US data November 1987 to April 2002. Results align with
previous findings on monetary policy.

2.1 Introduction

In term structure modelling a vital part of the analysis is how the dynamics
of the short rate is specified. Given that the short rate is so closely linked
to the monetary authority, it is rather surprising that more sophisticated
measures of this linkage have not received greater attention. In contrast there
is a separate class of models that explicitly focus on the design of monetary
policy. In its most simple form the central bank sets its instrument rate
according to a Taylor (1993) rule, an approach that has since been extended
by Svensson (2000), Rudebusch (2001) and others.

Usually these studies are conducted in a discrete time setting. The cur­
rent paper reformulates a standard model on optimal monetary policy in
continuous time, which directly translates into a dynamic system for short
rate of affine constant volatility type. Complemented with assumptions on
investors' risk preferences this completely characterizes the term structure of
interest rates. If the market price of risk is an affine function of the state
variables, the implied term structure model is affine in the state variables,
and we obtain a multi-factor version of Vasicek (1977). This facilitates the
analysis of term structure dynamics, and in particular we can relate term
structure dynamics to the stance of monetary policy. Thus the model may
be helpful for understanding differences in term structure dynamics under
different monetary regimes.

o I am greatly appreciative to my adviser Paul Soderlind for excellent guidance
throughout this work. I would also like to thank colleagues at the Department
of Financial Economics and seminar participants at the Swedish Riksbank. In
particula.r the pa.per improved significantly from the comments by Jesper Linde,
Ulf Soderstrom and Anders Vredin. I have also benefitted from valuable com­
ments by Pierre Collin-Dufresne, Frank de Jong and Monika Piazzesi. Financial
support from Bankforskningsinstitutet is gratefully acknowledged.
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A standard model on monetary policy starts out by assuming that the
dynalnics of inflation and the output gap is governed by a Markov system,
with a structure motivated by usual economic arguments. If the output gap
is positive inflation has a positive drift, thus reflecting the traditional Philips
curve. In a sin1ilar way the output gap follows a process with a drift that
depends on the short-term real rate. If the real rate is high, output growth
is slowed down. Due to the dependence on the short rate, it is possible for
a monetary authority to control the system. In the current paper we follow
Svensson (2000) by assuming that the monetary authority sets its instrument
rate, the short rate, to control the system in a way that is optimal with respect
to a particular objective function. The objective is to minimize unconditional
variances in inflation and output growth, each with a certain weight.

It is not uncommon for papers on optimal monetary policy to look at the
implied term structure of interest rates. The approach is usually to consider
the yield on a long-tern1 bond as the expected average of the short rate plus a
term premium. A contribution of reformulating the model in terms of a stan­
dard term structure model, is that it facilitates a more elaborate treatment of
the term premium. The term premium is related to risk compensation with
respect to the each of the model's state variables. This in turn requires that
we specify investors' attitude towards risk with respect to each state variable.
In the current paper we draw on a recent result by Cochrane and Piazzesi
(2001), who find that excess returns on bonds of various maturities are well
described by a one-factor model. This allows us to reduce parameters in the
specification of the market price of risk.

Given a term structure model, estimating it to data is an endeavor in
itself. In the current situation, where the model's state variables are familiar
economic quantities, there is a trade-off. On one hand one would like the
variables to be in resemblance with regularly published figures such as the
consumer price index or quarterly GDP. On the other hand one would like
the state variables to be in accordance with observed term structure dynam­
ics. In Ang and Piazzesi (2001) observed measures are used to explain as
much term structure variation as possible, and then unobserved variables are
incorporated to explain the remainder. Another approach is to use a Kalman
filter, and along this branch we find Wu (2001) and Brennan, Wang and Xia
(2002).

In the current paper the technique is somewhat different. For a given
instantaneous covariance matrix of yields, there is only a limited set of three­
factor models that are consistent with the observed covariance matrix. In a
first step the set of covariance consistent three-factor realizations is character­
ized. This allows us to extract that realization of the observed tern1 structure
that best matches some publicly observed series of the state variables. In a
second step the extracted factor series are taken to be the true observations,
and the model for the monetary transmission mechanism is estimated with
usual estimation techniques. In summary the two steps produce a model for
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the factor dynamics. In a third and final step the .model obtained is taken
to be the true model, and the market price of risk is estimated as a residual
between term structure dynamics and factor dynamics.

The paper is organized as follows. In Section 2.2 the n10del for the mone­
tary transmission mechanism is presented. This section also gives some gen­
eral theory on term structure modeling and specifies a functional form for the
market price of risk. Section 2.3 describes the estimation techniques. This in­
cludes how factors series are extracted from the yield curve, how the monetary
model is estimated and how risk premia are estimated. Section 2.4 describes
the data set, Section 2.5 presents the results and Section 2.6 summarizes.

2.2 The model

The description of the model is divided into two parts. The first part, in
Section 2.2.1, defines the monetary transmission mechanism, and is the con­
tinuous time equivalent of standard papers on monetary policy. To study
the implications for market prices, investors' risk preferences also need to be
considered. Section 2.2.2 studies market prices and specifies a simple factor
model for the market price of risk. Section 2.2.3 concludes with a numerical
example.

2.2.1 The monetary transmission mechanism

The model is similar to Clarida, Gali and Gertler (1999). The state of the
economy is represented by three state variables, the short nominal rate Tt,

the instantaneous rate of inflation 7ft, and the output gap Yt. For notational
convenience inflation and the output gap are both assumed to have zero
unconditional means. Their dynamics is governed by

d7ft == a23Ytdt + O"7r dw7rt,

dYt == a31 (Tt - 7ft) dt + a33Ytdt + O"ydwyt.

The processes W 7rt and Wyt are standard Wiener processes with instantaneous
correlation P23. The volatilities 0"7r and O"y are positive constants. As for the
drift term, the coefficient a23 is positive, which means that a positive output
gap gives a positive drift in inflation. This captures the traditional Philips
curve. The quantity Tt - 7ft is a measure of the instantaneous real rate. The
coefficient a31 is negative, and consequently a positive instantaneous real
rate contributes negatively to the output gap. The dependence on the short
interest rate opens the way for a monetary authority to control the system.
By adjusting the short nominal rate, the instantaneous real rate is altered.
The coefficient a33 can have either sign. A standard utility based model would
typically imply a33 == 0, so we here allow for richer dynamics. Parameter are
"deep" in the sense that they are policy invariant.
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The monetary authority controls the short nominal rate, but can not do
so perfectly. The short nominal rate follows a stochastic process according
to l

where W 1't is a standard Wiener process with an instantaneous correlation to
Wtrt and Wyt of PI2 and PI3 respectively. The volatility (7r is an exogenous
positive constant, and the drift Ut is an arbitrary adapted process. While
the central bank has no means of influencing the volatility ar, it can specify
exactly the drift Ut.

For Ut we follow Svensson (2000) by assuming that the monetary authority
is equipped with a loss function according to

(2.2)

where qu, qtr and qy are positive weights, normalized to sum to unity.2 This
specification of the loss function implies that the monetary authority is con­
cerned with variations in inflation and output, but also considers a smoothing
criterion for the short rate. Rapid changes of the short rate in either direction
are penalized through the weight qu.

The monetary authority chooses the control Ut to solve

u; = arg minL.
u

The problem is set up as a standard exercise of optimal control, a version of
the linear-quadratic regulator. It is well-known (see e.g. Bjork (1998)) that
the optimal control law Ut is a linear function of the state variables. That is,
there are constants all, a12, and a13 such that

With this control the unconditional mean of the short rate is zero.3 For
convenience we do not distinguish between Ut and ut.

All state variables and all parameters are publicly observable.

I The short rate is modeled as a continuous process. This contrasts to the typical
behavior of central banks, who adjust the short rate discontinuously. A continu­
ous process is assumed for tractability.

2 The variance operator for the respective state variables need not be a well-defined
quantity. For a mathematically correct treatment of the subsequent control prob-

lem one can replace the respective variance operators by Et [It"" e-P(S-t)x~sds],

where p is some positve constant. The optimal control used in the paper corre­
sponds to the limiting optimal control as p ~ O.

3 Analytical formulas for all, al2 and a13 as functions of the underlying parameters
exist, but are complicated. In the estimation numerical procedures provided in
Matlab were used.
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2.2.2 Market prices

The model for the monetary transmission mechanism gives the state of the
economy in terms of a three-dimensional state vector Xt = (rt 1ft Yt)' with
dynamics

(2.3)

where A and V are constant 3 x 3 matrices. Although this constitutes a
system for the general dynamics of the economy, as a model for pricing finan­
cial securities it is incomplete, since this requires an assessment of investors'
attitude towards risk. A naive approach is to disregard risk concerns, and
consider the yield on a long-term bond as the expected average of the short
rate over the bond's maturity. This is the expectation hypothesis in its most
rudimentary form, and it is usually rejected. Here I follow the tradition in
term structure modelling as set out in Black and Scholes (1973) and Merton
(1973).

Let Pt = P (t, Xt) denote the price of a financial asset in the economy.
The Ito differential of Pt is given as

dPt = PtJ-Ltdt + Ptatdwt,

where the drift J-Lt and the volatility at = (alt a2t a3t)' may depend on Pt. If
Pt is fully immunized against variations in Xt then at = o. In this case the
asset is locally risk-free and economically equivalent to a short risk-free bond.
Since such a bond has an instantaneous return equal to the short risk-free
rate rt, it is a natural requirement that the drift jjt equal rt.

If Pt is partially immunized so that O'it = ajt = 0 but akt =F 0, for distinct
i, j and k, then the holder of the asset is exposed to only one risk factor. In
this case the drift J-Lt need not equal to the short rate, but can in a similar way
be interpreted as a compensation for holding risk k. Taking account for the
degree of exposure akt it can be shown that the appropriate relation between
J-Lt, (Jkt and rt is that at each point in time there is a number Akt such that

jjt - rt \--- = Akt·
akt

(2.4)

This conjectures that for a given risk factor, assets exposed to only this factor
share a common ratio for the excess return per unit volatility. Given one asset
exposed to risk k, all other such assets can be seen as economically equivalent
to a combined position in the first asset and a risk-free bond. The ratio Akt is
called the market price of risk with respect to factor k, and it has a natural
interpretation as the factor's Sharpe ratio. The relation (2.4) must hold at
any instant in time, although Akt very well may change over time.

Since there are three sources of uncertainty, market prices of risk are
completely characterized by the three-dimensional vector At = (Art A1rt Ayt)',
which accordingly reflects investors' attitude towards risk. To price financial
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securities, we need to know At. It is not sufficient that we learn At at a given
point in time - we need to know the entire dynamic structure of At. However,
if the dynamics of At is known, this is sufficient to price financial securities.

To illustrate, suppose that At == 0 for all t. In this case investors are risk­
neutral with respect to each factor, and the expected excess return on any
financial asset is zero. This corresponds to the expectations hypothesis. The
natural extension of this is the case when At is constant over time. In the
constant volatility model studied here, this implies that the risk premium on
a constant maturity bond is constant over time. In other words, the term
premium for a fixed time to maturity is constant over time.

Although the assumption of a constant risk premium provides a natural
benchmark, several studies suggest that risk premia vary over time. For the
bond market early papers include Fama and Bliss (1987) and Campbell and
Shiller (1991). In these studies excess returns on bonds of various maturities
are regressed on contemporaneous forward rates or yields. In a more recent
study Cochrane and Piazzesi (2001) extend Fama and Bliss' study to include
several forward rates. A main finding in that paper is that the excess return
on bonds of various maturities is well described by a one factor model, a
factor Cochrane and Piazzesi refer to as the return forecasting factor.

Here I adopt a factor model for the market price of risk similar to that in
Cochrane and Piazzesi, except that a constant term is added. More precisely,
I assume that the market price of risk can be written as

At == ko+ k1'rt,

'rt == h'Xt,

where ko, k1 and h are constant 3 x 1 vectors, and where the first element of
h for normalization is set equal to one. The factor ~t captures the dynamic
part of the risk premium, and is comparable to the return forecasting factor
in Cochrane and Piazzesi.

Taken together with the dynamics of the state variables (2.3) the market
price of risk characterizes the pricing of financial assets. Furthermore, be­
cause the dynamics of Xt is of linear constant volatility type, and because the
functional fornl for At is affine in Xt, we obtain a term structure model that
is a multi-factor version of Vasicek (1977). This is convenient, since formulas
for bond prices take a particular simple form.

Let F r (t) denote the price on' a nominal risk-free discount bond with
remaining maturity T, and let yr (t) denote its yield so that

F T (t) = exp (- yr (t) . T) .

With assumptions as above there are functions a [0, (0) -+ 1R and b :
[0, (0) -+ R3 such that

yr (t) = a (T) + b (T ) I Xt. (2.6)

The functions a and b are given in Appendix 2.7.
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2.2.3 An example

The following example is provided to illustrate how the model works. Para­
meter values are chosen to match the estimation results in Section 2.5 below.
Inflation and the output gap are governed by

d1rt = 0.22Ytdt + 0.55dw1rt,

dYt = -1.46 (rt - 7ft) dt + 0.5Ytdt + 1.44dwyt,

and the short rate follows the process

drt = Utdt + 1.14dwlt.

The instantaneous correlation between the Wiener processes is (P12' P13' P23) =
(0.64, 0.25, -0.34). The drift Ut is optimal with respect to a certain set of
weights in the monetary authority's objective function (2.2). We consider
two set of weights. The first is given by (qr, q1r' qy) == (0.24, 0.76, 0), in
accordance with subsequent estimation results, and the second is given by
(qr, q1r' qy) = (0.1, 0.9, 0). In each case the weight on output targeting is
zero, and the difference lies solely in the relative weight on interest rate
smoothing. For the latter example the weight on interest rate smoothing is
lower, which allows for a more flexible rule for the interest rate.

We study implications for market prices in a scenario where the short rate
and the output gap are at their long-run means, but where inflation is one
percentage point below the target. For expositional reasons the market price
of risk is set equal to zero. Figure 2.1 depicts yield curves for each example.
Both yield curves display a negative hump. This reflects expectations that
the short interest rate will first be lowered as inflation is stabilized, and then
successively adjusted back toward its long-run mean. For the second set of
weights the hump on the yield curve is more pronounced. The lower weight
on interest rate smoothing is reflected in a more aggressive policy against
inflation.
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Figure 2.1. Yield curves. Modell corresponds to (qr, q1r' qy) = (0.24, 0.76, 0).
Model 2 corresponds to (qr, q1r' qy) = (0.1, 0.9, 0). Curves are shifted upward
0.05. The y-axis is percentage points, and the x-axis is time to maturity in years.
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In this context it is also illustrative to look at yield volatilities. Using
(2.6) for yields together with (2.3) for the state dynamics, we obtain the
instantaneous volatility of a yield for a given maturity 'T as

V (r) = Vb (r)' VRR'V'b(r)

where RR' is the instantaneous correlation matrix of the state variables. Con­
sequently,- yield volatilities are independent of the current values of the state
variables. In other words the yield volatility curve is time homogenous. Figure
2.2 depicts yield volatilities for the given sets of weights. Each curve exhibits
a hump in a similar way as the yield curves. The same reasoning also applies.
Unexpected changes in the state variables cause the monetary authority to
adjust the short rate. However, because of the smoothing condition adjust­
ments are delayed, and as a consequence volatility curves are upward sloping
for low maturities, albeit a small curl is observed at the very short end due
to the instantaneous volatility of the short rate. Over time the short inter­
est rate is adjusted back, and the volatility curves are therefore downward
sloping at higher maturities. Similarly to the yield curves, a lower weight on
interest rate smoothing is associated with a hump that is more pronounced
and located at lower maturities.

10

Figure 2.2. Yield volatility curves. Model 1 corresponds to (qr, q7r' qy)
= (0.24, 0.76, 0). Model 2 corresponds to (qr, q7r' qy) = (0.1, 0.9, 0). The
y-axis is percentage points, and the x-axis is time to maturity in years.

2.3 Estimation

The model for the monetary transmission mechanism as defined in Section
2.2.1 taken together with the specification for the market price of risk as
defined in Section 2.2.2, specifies a model for the term structure of interest
rates. In this aspect the current paper is very typical. Three-factor affine
interest rate models have been studied in e.g. Babbs and Nowman (1999)
and Dai and Singleton (2001).
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In additional resemblance with previous work, the current paper argues
that the determinants of the term structure can be associated with macro
economic aggregates. Along this branch we find Ang and Piazzesi (1999)
and Wu (2001) who study affine interest rate models and relate factors to
measures of inflation and output.

Our contribution to the literature lies in the specification of the factor dy­
namics. The model for the monetary transmission mechanism adds structure
to the dynamics, which allows us to relate model parameters to more familiar
economic relationships, for instance the Philips curve and the weights in the
monetary authority's objective function. As such the model may be help­
ful for understanding differences in term structure dynamics under different
monetary regimes.

An important part of this agenda is to estimate the model using historical
data. This can validate the use of the model, and can in itself be a way of
identifying differences between monetary regimes. Estimating the parameters
of the model amounts to estimating the underlying state equation (2.1), the
weights for the loss function (2.2), as well the parameters for the market
price of risk (2.5). In the literature on monetary policy various versions of
the model (2.1) - (2.2) have been estimated, see e.g. Soderstrom, Soderlind
and Vredin (2002). The current paper deviates from these estimations in
that term structure data is used to infer the state processes. Using financial
prices is attractive, since these tend to be forward looking and possibly more
representative of the monetary authority's information set.

Using financial prices is however also problematic since state variables
are not directly observable. More precisely there is an identification problem.
The economic model, taken together with a specification of the market price
of risk, gives rise to certain term structure dynamics. However, on observing
term structure dynamics, the same dynamics is generated by an infinite num­
ber of other factor models, only one of which is consistent with the original
economic model.

In the current paper the identification problem is treated by adding an
initial step to the estimation procedure. In this first step factor series are
extracted from the yield curve in a manner that is consistent with the general
affine three-factor structure. The extracted factor series are selected to match
some publicly observed measures of the original state variables optimally in
a usual least squares sense.

In a second step the extracted factor series are interpreted as true ob­
servations of the state variables, and accordingly referred to as the short
rate, inflation and the output gap. In this step the model's parameters are
estimated with usual techniques.

In the third and final step the economic model is reassociated with the
yield curve by estimating the parametric form for the market price of risk
(2.5).
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The remainder of the section covers each step in some more detail, with
selected parts deferred to the appendix.

2.3.1 Extracting factor series

Suppose we observe yields on n zero coupon bonds with maturities 71, ... , 7 n

and let the observations be denoted by ~o = (~Tl, ... , ~Tn)'. The first ma­
turity 71 is taken to be a short date so that the first yield can be interpreted
as the short rate. According to the model there is an n x 1 vector a and an
n x 3 matrix B such that

~o = a+Bxt,

where Xt = (rt 7Tt Yt)'. The respective entries of a and B are in accordance
with equation (2.6). Letting yt = ~o - E [~O], Le. yields detrended to mean
zero, we obtain the linear factor model

(2.7)

If Xt is observable, we are in a good position of estinlating B. We can for
example estimate the dynamics of Xt with usual techniques, and then estimate
B by choosing appropriate parameters for the market price of risk. If on the
other hand Xt is not observable, there is a problenl in that the representation
of yields in terms of an unobservable state vector is not unique. Any linear
transformation of the state variables Xt = CXt, where C is an invertible 3 x 3
matrix, yields a new representation. In this manner we obtain an entire family
of term structure realizations, each of which allows a representation (2.7).
Within this family we are interested in one particular realization, namely
that one for which the corresponding factor series can be interpreted as the
original state variables the short rate, inflation and the output gap.

In order to extract this particular realization, two matters need to be
settled. First, given set of yield curve realizations, we require a criterion
for selecting a particular realization within this set. Second, we require a
procedure for characterizing the relevant set of yield curve realizations.

Starting with the first problem, how to select a particular realization,
different approaches are conceivable. One plausible selection criterion is, to
select that realization Xt for which the constraints that the economic model
imposes on the dynamics of Xt make most sense. This has however turned out
to be problematic. A possible explanation to the difficulties is, that although
the economic model puts constraints on the parameters, the same set of re­
strictions may apply for several yield curve realizations. If the constraints are
satisfied, this does not in itself guarantee that implied series can be inter­
preted as those basic economic quantities we seek. Consequently, finding a
model where the economic constraints make most sense, does not guarantee
that corresponding parameter estimates make sense economically.
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An alternative selection criterion is to make use of publicly observed values
of the state variables. The short rate is naturally observed since it is equal
to the first element of}t. For inflation and the output gap we can take some
regularly published figures (see Section 2.4 below). We can then select that
realization for which the sum of squared residuals between observed series
and extracted factors is minimized. This is the selection criterion used in the
sequel.

Proceeding with the second problem, how to characterize the set of factor
realizations, the method is described in some detail in Appendix 2.8. To give
the general idea, suppose we are given one particular factor realization, and
suppose this can be written as

with the instantaneous covariance matrix of Xt equal to the identity matrix.4

By defining new factors Xt according to

for some invertible 3 x 3 matrix D we obtain a new factor model,

By inverting this equation, we obtain the corresponding factors Xt. The family
of factor realizations is therefore parameterized via the matrix D. Because
the matrix D has nine elements, the dimension of the factor realizations set
is equal to nine. The appendix shows how to select the matrix D optimally
to minimize the sum of squared residuals between the observations and the
extracted factors.

Note that the approach is independent of the market price of risk, as long
as this is affine in the state variables (as it is in e.g. (2.5)). A different speci­
fication of the market price of risk is likely to induce different factor loadings
for the yields, Le. a different matrix B in equation (2.7), and accordingly
different yields. But given yields originally generated by the factors Xt, there
will always be matrices B O and D that recover these factors.

2.3.2 The monetary transmission mechanism

To estimate the basic model, we take as given the extracted factor series Xt of
the previous section, and interpret it as representing the short rate, inilation
and the output gap respectively. We thus have the model

4 This initial representation will be taken to be the principal components repre­
sentation (see Appendix 2.8 for details).
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Note that the instantaneous covariance matrix of Xt is known. In terms of
the previous section we have that

dXt dx~ = DD'dt,

where we have used that the instantaneous covariance matrix for the ini­
tial factors Xt is equal to the identity nlatrix. In the estimation there is
consequently no need to estimate V or the correlation structure of Wt. The
parameters to be estimated are

The model is estimated with maximum likelihood, and the likelihood function
is given in Appendix 2.9.

2.3.3 The market price of risk

In the third and· final step we take as given the dynamics estimated in the
previous section. From Section 2.3.1 we have the affine model for yields

The vector a and matrix B are taken to be the empirical counterparts. To
estimate the market price of risk, recall the model (2.5),

At = ko + kl~t,

~t = h'xt.

Since the dynamics for the system is given, for a given choice of parameters
ko, k1 and h we obtain pricing formulas a ('T) and b('T). Denoting the corre-
sponding estimated vectors for the factor model by a and B we select that
set of parameters which minimizes the sum of squared residuals

2.4 Data

The data set consists of observed state variables and observed yields. For the
basic model, the short rate is set to the one-nlonth interbank rate. Inflation
is measured as quarterly changes in the GDP implicit price level. The output
gap is measured as real GDP minus potential GDP as estimated by the
Congressional Budget Office (2002). The measures of inflation and GDP are
in accordance with Rudebusch (2001).
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Term structure data is obtained from swap rates of maturities 2, 3, 4,
5, 7, and 10 years. The short rate is set to the one-month interbank rate.
In the estimation it is more convenient to work with zero coupon yields,
and the swap rates were therefore stripped. This was done by for each date
fitting Nelson - Siegel parameters to the swap curve. The parameters were
constrained to set the short rate equal to the one-month interbank rate. For
each swap rate the fitted curve was used to strip coupon payments, and the
residual was stored as the zero coupon yield for the corresponding maturity.

The sample period is November 1987 to April 2002, approximately cov­
ering the Greenspan period.

2.5 Results

The extracted factor series are depicted in Figure 2.3. Extracted and observed
series display similar patterns, but at any given point in time values can
be quiet different. Series need not match perfectly. For example, there may
be times when observed inflation is influenced by temporary effects, thus
making it less representative of the state variable relevant for the monetary
authority's objective function. Also the monetary authority's assessment of
potential GDP need not perfectly align with the current estimates.

0.02

o

-0.02

-0.04
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Figure 2.3. Estimated and observed state processes. Inflation is detrended and then
shifted upward by 0.03. The output gap is detrended and then shifted downward
by 0.03. Infla.tion is plotted as a one-year moving average.

The volatilities and correlations of the state variables are given by
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The yields' loadings on the factors are depicted in Figure 2.4. The lines
correspond to the respective column vectors of B in equation (2.7). The figure
suggests that long term yields are quiet sensitive to changes in inflation, and
negatively related to unexpected changes in the short rate. Note however
that in the estimation there is no control to keep factor loadings moderate,
and results should therefore be interpreted with care. For example, the high
sensitivity to inflation and the negative dependence on the short rate may
relate to the seemingly high correlation P12 between these state variables.
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Figure 2.4. Factor loadings. Each line corresponds to a row vector of the matrix B
in (2.7). Time axis is time to maturity in years.

For the estimation of the monetary transmission mechanism, the model
is written as

dXt = AXtdt + VdWt·

The estimate of the drift matrix A is5

A=

-2.49 4.28 2.12
o 0 0.22

(0.09)

- 1.46 1.46 0.50
(0.37) (0.37) (0.29)

The estinlate of a23 of 0.22 is low in comparison with previous studies ­
Rudebusch (2001) estimates a value of 0.13 x 4 (quarterly observations) on
US data 1968:Q3 to 1996:Q4. The estimate of a31 of 1.46 is higher than
Rudebusch' 4 x 0.09.

The corresponding estimates of the weights in the monetary authority's
objective function are

5 The eigenvalues of A are -1.04 and -0.48 ± 0.57i.
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qu qn qy
0.24 0.76 0
(0.07) (0.07) (-)

The weight on output stabilization vanished and was therefore constrained to
zero in the estimation. The estimates are roughly in line with previous studies,
although these vary considerably. Soderstrom, Soderlind and Vredin (2002)
report that generally the interest rate smoothing parameter is estimated so
that qu/qn is in the range 0.5 to 2, while the weight on output stabilization
usually is such that qy/q7r is less than 0.1. The corresponding numbers for
the current estimation are 0.31 and o. Consequently the current estimation
suggests a lower weight on interest rate smoothing.

Impulse-response functions are depicted in Figure 2.5. The graphs are
similar to those obtained by Soderstrom, Soderlind and Vredin (2002) when
calibrating the model to US data 1987-1999.
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Figure 2.5. Impulse-response functions. The upper graph shows expected paths of
the state variables starting with the short rate at 0.01. The lower left graph depicts
expected paths starting with inflation at 0.01 and the graph at the lower right
expected paths starting with the output gap at 0.01. Time axis in years.

It remains to estimate the market price of risk. The original data has
been through two manipulations, first as state variables were extracted, and
second as the economic model was imposed on the dynamics. Results should
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therefore be interpreted cautiously. We follow the procedure set out in Section
2.3.3 and estimate the market price of risk as

(

0.544 ) ( -0.0365)
At = 0.1523 + -0.1204 "'It,

0.6907 4.0739

"'It = ( -0.4080 1 0.2475) Xt.

The constant term of At have all entries positive, which suggests that if the
state variables are all at their long-run means, all risk factors have a positive
price. As for "'It, the time varying part of At, a time series is given in Figure
2.6. Evidently "'It is mainly related to inflation. A possible explanation is that
in the constant volatility model studied here, an increase in inflation does not
a priori affect the level of financial risk. However, if volatility in inflation is
positively related to the level of inflation, an increase in inflation may increase
the perceived risk in a financial security. Further, the time variation in At is
moderate - the unconditional standard deviation of "'It is merely 0.28%. Both
findings are in contrast with Cochrane and Piazzesi (2001) who, also in a
constant volatility model, find the return forecasting factor, the time varying
part of the market price of risk, to mainly relate to measures of the business
cycle and also economically significant.

The time variation in At goes primarily through the market price of risk
with respect to the output gap. Thus, if inflation is high, investors require a
high compensation for carrying risk related to output.

Figure 2.6. Time variation in "'It. The left hand graph shows the extracted series
for inflation and the estimated "'It, where "'It has been multiplied by a factor 2. The
right hand graph shows the extracted series for the output gap and "'It, with "'It
multiplied by a factor -2.

The implied vector a and matrix B are depicted in Figure 2.7 together
with their sample counterparts. For a, the constant part of At, observed and
model implied values are hardly distinguishable. Also, the one factor model
for the time varying part of At seems to work well in that observed and model
implied vectors are close.
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Figure 2.7. Observed and model implied vales of a and B. Time axis is time to
maturity in years.

2.6 Summary

This paper has investigated how term structure dynamics may be related to
monetary policy. The finding is that a standard model on monetary policy
can be associated with observed term structure dynamics in a way that aligns
with previous results. This gives support to the idea that financial prices can
be used to infer the market's perception of the monetary regime.
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2.7 Appendix. Bond prices

Let

AQ = A+ Vk1h'

m=Vko

The spot rate for maturity r is given by

yr (t) = a (T) + b(r)' Xt

where

b(T) = e~A (T)

a (T) = r - e~ (I + A (r )) m

-~ trace (V {M - MA(r) - A(r)' M + ~ (eA1TKeAT
- K) }VI)

and el == (100)'. The function A(r) is given by

A (r) == (I - exp (Ar)) (Ar)-l

and the matrices M and K are defined according to

M == (A,)-l ele~ (A)-l

A'K+KA= M

2.8 Appendix. Extracting factor series

From the observed yields we obtain an empirical covariance matrix of yield
innovations. Given monthly observations let

Ey = 12 x cov Llyt.

A Cholesky decomposition of Ey gives an orthonormal matrix C and a non­
negative diagonal matrix A such that

Ey = CAG'.

The diagonal entries of A equal the eigenvalues of E y . If the original model
is correct, it is true for the theoretical counterpart of Ey that all but three
of the eigenvalues equal zero. For the empirical covariance matrix Ey we
generally have all the eigenvalues positive, but for an estimation it is natural
to focus on the three greatest.



2.8 Appendix. Extracting factor series 53

This allows us to formulate a first candidate factor model of the yield
curve. Suppose A is chosen such that its diagonal entries satisfy £I 2:: £2 2:
... 2: in 2: O. Let

where each Cij is the corresponding element of C. The first factor model is
defined as

with Xt = (Xlt X2t X3t)' and

dXt = M~dt + dw~,

where wr is a three-dimensional standard Wiener process. The drift term
MP has not been specified since it is not in our immediate interest. Note
that the factors Xt have been normalized to unit variance. Since the principal
components are independent, this implies that the instantaneous covariance
matrix of Xt equals the identity matrix.

Given this particular realization of the term structure, the complete set of
linear three-factor constant volatility realizations can be characterized. Each
such realization Xt corresponds to a matrix D for which

Xt = DXt.

Because D is a 3 x 3 matrix, the set of factor realization has dimension nine.
Mathematically it is convenient to think of the matrix D in terms of its

row vectors. We can then parameterize D by factoring it into three distinct
matrices so that D = DI X D2 X D3 • The first matrix DI is diagonal and
normalizes each row vector to unit length. We can thus think of D 2 x D3

as comprised of three unit vectors in IR3 . The second matrix D 2 defines the
relative placement of these vectors, or equivalently the angels between any
two vectors. Because there are three vectors, there are three two-vector com­
binations, and thus three angels that should be defined. Consequently the
parametrization of D2 has dimension three. We can choose D2 lower triangu­
lar. The last matrix D3 is any orthonormal matrix. Again we can parameterize
D 3 using three angels. The first two angels define the locus of the first vec­
tor. The first angel is a rotation in the xy-plane, and the second angel is an
elevation along the z-axis. Given the locus of the first vector, the remaining
two vectors must be located on the two-dimensional plane orthogonal to the
first vector. The third angel defines the locus of the second vector in terms
of a rotation in this plane. This also defines the locus of the third vector as
orthogonal to the other two.
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The first two matrices relate to the covariance between the state variables.
The matrix D l defines the volatilities, and the matrix D2 the correlation
structure. The matrix D3 does not give any information about the covariance
structure. Consequently, for a given covariance matrix, the set of covariance
consistent factor realizations has dimension three.

Each choice of D produces a factor model for yields according to

where B D == B OD- l •

Since we assume that the short rate is observable and equal to the first
element of yt, we can restrict the set of admissible matrices D. Variations in
inflation and the output gap do not affect the short rate directly, but do so
implicitly via the drift term. Therefore it must hold for the first row of B D

that

(bR b~ b~) = (ar 00) ,

where bB is the corresponding element of BD and where ar is the volatility
of the short rate. This imposes two additional restrictions on D, and in effect
the set of admissible matrices has dimension seven. The restrictions are set
to be restrictions on the matrix D 3 •

For a given admissible matrix D we can back out factor series according
to

We can then choose that matrix D for which the extracted factor series look
reasonable.

By construction the first element of Xt is equal to the short rate. We seek
that choice of D for which the remaining two factors resemble inflation and
the output gap respectively. Suppose therefore that we have observations of
inflation X2t and the output gap X3t. For each D define the loss function6

T

f (D) = L {(x2t - X2t)2 + (X3t - X3t)2}.
t=l

The function f is minimized using numerical procedures in Matlab.
Given D we have the instantaneous covariance of the state variables ac­

cording to

dXt dx~ == DD'dt

== DlD2D~D~ dt,

6 Introducing a weightning of the respective residuals does not affect the resulting
implied factor series.



2.9 Appendix. The likelihood function 55

where the last equality follows from the fact that D3 is orthonormal. Con­
versely however, for a given covariance matrix of the state variables, we do
not have a unique matrix D. Because there are three volatilities and three
correlations, and because the set of admissible D has dimension seven, there
is one free element of D. The free element corresponds to the fact that on only
observing yield dynamics, we can not directly distinguish between covariance
independent linear transformations of inflation and the output gap.

2.9 Appendix. The likelihood function

Given

we have

where

and K solves

AK + KA' == VV'

If we are given observations (Xt)t=l, ... ,T the log-likelihood function is given
by

T

L = -~ (T - 1) In IMLltl- ~ L L1XtM;;.i L1x~
2 2 t=2

where

1\'-'" (-- ALlt-- )LJ.Xt == Xt - e Xt-l





References

1. Ang, Andrew and Monika Piazzesi, "A no-arbitrage vector auto-regression of
term structure dynamics with macroeconomic and latent variables," Working
Paper, Columbia University.

2. Babbs, Simon H., and K. Ben Nowman, "Kalman filtering of generalized Vasicek
term structure models", Journal of Financial and Quantitative Analysis, 34:1,
115-130.

3. Bjork, Tomas, 1998, "Arbitrage theory in continuous time," Oxford University
Press.

4. Brennan, Michael J., Ashley W. Wang and Yihong Xia, "Estimation and test
of a simple model of intertemporal capital asset pricing," Working Paper, An­
derson Graduate School of Management, UCLA.

5. Campbell, John Y. and Robert J. Shiller, 1991, "Yield spreads and interest rate
movements: a bird's eye view," Review of Economic Studies 58, 495-514.

6. Clarida, Richard, Jordi Gall and Mark Gertler, 1999, "The science of monetary
policy: A new Keynesian perspective," Journal of Economic Literature 37, 1661­
1707.

7. Cochrane, John H. and lVlonika Piazzesi, 2001, "Bond risk premia," Working
Paper.

8. Dai, Qiang and Kenneth Singleton, 2001, "Expectation Puzzles, time-varying
risk premia, and affine models of the term structure," Journal of Financial
Economics 63, 415-441.

9. Duffee, Gregory R., 2002, "Term premia and interest rate forecasts in affine
models," Journal of Finance 57(1),405-443.

10. Ellingsen, Tore and Ulf Soderstrom, 2001, "Monetary policy and market interest
rates," American Economic Review 91(5), 1594-1607.

11. Fama., Eugene F. and Robert R. Bliss, 1987, "The information in long-maturity
forward rates," American Economic Review 77, 680-692

12. Fama, Eugene F. and Kenneth R. French, 1989, "Business conditions and ex­
pected returns on stocks and bonds," Journal of Financial Economics 25, 23-49.

13. Nelson, C., and A. Siegel, 1987, "Parsimonious modeling of yield curves," Jour­
nal of Business 60,473-489.

14. Rudebusch, Glenn D., 1995, "Federal Reserve interest rate targeting, rational
expectations, and the term structure," Journal of Monetary Economics 35, 245­
274.

15. Rudebusch, Glenn D., 2001, "Is the Fed too timid? Monetary policy in an
uncertain world," Review of Economics and Statistics 83(2), 203-217.

16. Svensson, Lars E. 0., 2000, "Open economy inflation targeting," Journal of
International Economics 50 (February), 155-183

17. Soderstrom, Ulf, Paul Soderlind and Anders Vredin, 2002, " Can a calibrated
New-Keynesian model of monetary policy fit the facts?," Working Paper,
Sveriges Riksbank.



58 References

18. Soderlind, Paul, 2001, "Monetary policy and the Fisher effect," Journal of
Policy Modeling 23, 491-495.

19. Vasicek, 0., 1977, "An equilibrium characterization of the term structure",
Journal of Financial Economics 5, 177-188.

20. Wu, Tao, 2001, "Macro factors and affine term structure models.", Working
Paper, Federal reserve Bank of San Francisco.



3. Optimal monetary policy, the zero bound
and the term structure of interest rates

Abstract

The paper studies optimal monetary policy and its implication for the
term structure of interest rates when the nominal short rate is bounded at
zero. We state the monetary authority's optimization problem in contin­
uous time according to two specifications, interest rate stabilization and
interest rate smoothing. For the former the optimization problem is solved
analytically, while numerical procedures are adopted for the latter. The pa­
per then turns to study implications for the term structure of interest rates
under risk-neutrality. Term structure equations are solved numerically and
implications for yield curves and yield volatility curves are discussed. Data
for a low-interest rate country like Japan for 1996 - 2003 exhibits s-shaped
yield curves and yield volatility curves. According to our results this shape
is consistent with a smoothing objective for the short rate.

3.1 Introduction

The conduct of monetary policy is undoubtedly an important determinant
for the term structure of interest rates. The present paper studies the relation
with a particular focus on the zero bound for the short rate. In this process
we extend existing research on two frontiers.

First we bring the two research areas monetary policy and term structure
modelling closer together. This is an endeavor that has received attention
in recent years by Ang and Piazzesi (2003), Dewachter and Lyrio (2002),
Hordahl, Tristani and Vestin (2003), Rudebusch and Wu (2003) and others.
Our approach differs from the papers mentioned in that we consider monetary
policy as implied from an optimization problem for a monetary authority,
similar to Ellingsen and Soderstrom (2001), (2003) and Skallsjo (2003). In a
study of the zero bound this distinction becomes essential as it otherwise can
be difficult to assess an appropriate functional form for the monetary policy
rule.

o I am deeply indebted to my advisers Tomas Bjork and Peter Englund for their
guidance and support. I am also grateful to Ulf Jonsson for help with issues in
optimal control, to Anders Szepezzy for help with the numerical solution to the
control problem in Section 3.5, and to Paul Soderlind for insightful comments
on my work. Financial support from Bankforkningsinstitutet and the Wallander
Foundation is gratefully acknowledged.
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Second our approach to the zero bound is a contribution to the literature
on term structure modelling. The zero bound is well recognized and nlany
popular models exclude negative interest rates almost surely, but this prop­
erty does not in itself guarantee realistic term structure dynamics when the
short rate is close to zero. Examples are Cox, Ingersoll and Ross (1985), the
squared Gaussian (see e.g. Pelsser (2000)) and Black and Karasinski (1991)
which all combine analytical tractability and non-negative interest rates with
sound short rate dynamics under normal nlonetary conditions. An alterna­
tive is Black (1995) who suggests that the short rate be modelled as the
non-negative part of an underlying stochastic process, which itself may be
negative. Black provides a discussion of the rationale for his proposal, noting
that the zero bound applies to nominal interest rates while its determinants
may be negative. In the current paper we put more structure on this ap­
proach by deriving the short rate process from an optimal monetary policy.
Underlying state dynamics relate to the short rate in a non-trivial way and
this specifies ternl structure dynamics in a way that would not be possible in
a more direct approach.

The model for the nl0netary transmission mechanism is a reduced form
of the standard franlework as set out in e.g. Clarida, Galf and Gertler (1999)
and Svensson (2000). In these papers the state of the economy is determined
by two state variables, inflation and the output gap. The state variables are
governed by a Markov system, in which one of the determinants is the short
rate as set by a monetary authority. The setup thus takes the form of a control
problem with the short rate as a control variable. The monetary authority
is then equipped with an objective function formed as expected quadratic
deviations from target levels in inflation, the output gap and (possibly) the
short rate. This results in a version of the linear-quadratic regulator, for
which it is possible to solve explicitly for the optimal control law minimizing
the value of the objective function. The optimal policy for the short rate is
linear in the state variables, thus similar to a Taylor (1993) rule. From a term
structure perspective the result is tractable since the model translates into a
multi-factor version of Vasicek (1977).

The above framework has become standard for monetary policy theory
due to its cornbined simplicity, realism and flexibility. However, the basic
model allows for negative interest rates. It is then natural to analyze the same
model under the constraint that the short rate remains non-negative. This
has been done by Orphanides and Wieland (1999) and Kato and Nishiyama
(2001), who both study a setting similar to Svensson (1999). It is shown that
the presence of a lower bound leads to nonlinear policy rules. In particular,
monetary policy becomes more expansive close to zero (though trivial at
zero) relative to the corresponding unconstrained problem. The monetary
authority follows a preemptive strategy. To compensate for the probability
that monetary policy is constrained in the next period, it becomes more
expansive in the current peri?d.
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The tradition in the literature on optimal monetary policy is to con­
duct the analysis in discrete time. In the present paper the model is set up
in continuous time since term structure mode1ling is better suited for this
framework. To set focus on short rate dynamics the two state variables infla­
tion and output are merged into one, referred to as the target variable. This
assumption keeps the analysis simple, and 'because we focus on implications
for the term structure of interest rates the target variable can be regarded as
a latent factor of the yield curve.

We study two specifications for the monetary authority's objective func­
tion, in the literature commonly known as interest rate stabilization and
interest rate smoothing. In the case of stabilization the monetary authority's
objective depends on the expected quadratic deviations in the short rate from
a target level. In the case of smoothing it depends on the expected squared
changes in the short rate. The latter assumption is more common in the lit­
erature as it seems to better capture the tendency among central banks to
adjust the short rate in several consecutive moves in the same direction, and
to change the direction only infrequently. The literature has also given some
attention to the origins of this behavior and several possible explanations
have been offered. For a review together with some empirical evidence see
Sack and Wieland (1999).

In both specifications, without the zero bound the control problem be­
comes a version of the linear-quadratic regulator with an optimal control law
that is linear in the state variables. With the zero bound the analysis be­
comes more involved. In the case of interest rate stabilization it is possible to
solve for the optimal control law analytically, but in the case of interest rate
smoothing we do not have an analytical expression. We then use the Pon­
tryagin minimum principle to study the special case where the target variable
is non-stochastic, and given this solution we apply a numerical procedure to
approximate the solution to the stochastic problem.

The implied control laws exhibit similarities as well as differences. In both
specifications increased volatility in the target variable is associated with a
more expansive policy. This reestablishes results in Orphanides and Wieland,
and Kato and Nishiyama - increased uncertainty induces the monetary au­
thority to act more preemptively. An implication of this is that the steady
state in the economy is reached at a value of the target variable that exceeds
its equivalent in the unconstrained problem.

The vital difference between the two specifications is the behavior of the
short rate in the vicinity of zero. With interest rate stabilization the short
rate is as most responsive to changes in the target variable just before the
zero bound is reached. With interest rate smoothing the opposite holds. In
particular, with smoothing the short rate always approaches zero in a smooth
manner, Le. with a time derivative equal to zero.

The two specifications result in two alternative models for the short rate.
Given these we turn our attention to the term structure of interest rates.
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In general this would require that we take investors' risk preferences into
account. Here, in order to make the analysis more transparent we assume
risk-neutrality. Bond prices are solved for using numerical methods. We study
model implied yield curves and yield volatility curves and compare shapes
with observations from the term structure in Japan 1996 - 2003. These tend to
exhibit s-shaped curves. A general observation is that the specification with
a smoothing objective has a stronger tendency to generate s-shaped curves.
This characteristic relates directly to the difference in short rate behavior
in the vicinity of zero reported above. A lower responsiveness in the short
rate acts as to compress the short end of the yield curve, resulting in lower
volatility in short to medium term yields. For long term yields the difference
between the two specifications is smaller.

The paper is organized as follows. Section 3.2 presents the general modeL
Sections 3.3 and 3.4 are devoted to interest rate stabilization, with theory
in the former and numerical examples in the latter. Interest rate smoothing
is treated similarly in Sections 3.5 and 3.6. For the analysis of the term
structure of interest rates some empirical background is given in Section 3.7,
while Sections 3.8 and 3.9 examine implications for the term structure in the
case of stabilization and smoothing respectively. Section 3.10 concludes.

3.2 The model

The model is a reduced form of the standard modeL To set the focus on
short rate dynamics, the two state variables inflation and output are merged
into one, referred to as the target variable. This assumption keeps the analysis
simple, and because we focus on implications for the term structure of interest
rates, the target variable can be regarded as a latent factor of the yield curve.

Thus there is one state variable Xt, the target variable. It is governed by
the process

(3.1)

Xo = x.

Here Wt is a standard Wiener process, x and if are centering constants with x
the target level and with if > 0 . For the parameters a, band a we assume that
a and a are non-negative and that b is positive. We deviate from previous
studies in the restriction on a. If a < 0 the process for Xt is "mean fleeing,"
which is normally compensated for by an appropriate process for Tt ensuring
that overall dynamics remains stable. In the present case however, when we
impose a lower bound on Tt, the analysis has to be restricted to the case
a ~ o.

All parameters are given exogenously and unaffected by any actions taken
by the monetary authority. This exposes the formulation to the Lucas cri­
tique. However, endogenity of parameters is not in our present focus.
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The short rate Tt is set by the monetary authority, and since b is positive
this makes it possible to control the dynamics of Xt. The objective is by as­
sumption to keep Xt close to x. If controlling Xt was the monetary authority's
sole objective the optimization problem would be ill-posed, since the implied
short rate rule would be arbitrarily aggressive. It is necessary to include mea­
sures that ensure a more moderate policy. We investigate two specifications
that are common in the literature, interest rate stabilization and interest rate
smoothing.

Starting with the case of interest rate stabilization the monetary author­
ity's preferences are formed according to a loss function

£1 (x) = pEx [100

exp (-pt) {q (Xt - X)2 + (rt - Ti} dt] ,

where q > 0 and p 2:: 0 are parameters with p = 0 taken to be the limit as
p ! O. Here the monetary authority has two objectives, it values low deviations
from the target in Xt but is also concerned with keeping Tt stable around r.
This gives rise to a control problem where the objective is to find a rule for
the short rate T as a function of x such that the loss function £1 is minimized.

In the case of interest rate smoothing the monetary authority follows a
policy that makes the short rate evolve smoothly over time. The process for
Tt can then be written as

dTt = Utdt ,

TO = T,

where Ut is the control law. With this specification the short rate is locally
deterministic, and with this we mean that there is no volatility term in the
Ito differential of Tt. The loss function is formed according to

£2 (r, x) = pEx,r [100

exp (-pt) {q (Xt - X)2 + u~} dt] ,

where q > 0 and p 2: 0 are parameters. The control is no longer the short rate
itself, but rather the time derivative of the short rate. In effect Tt becomes a
state variable, and the formulation assumes in total two state variables, Tt and
Xt. As a consequence this specification allows for richer dynamics although
there is still only one driving Wiener process and the number of parameters
is the same.

In the literature on optimal monetary policy it is most common to adopt
the latter form of the loss function, Le. with a smoothing objective for the
short rate. This seems to better capture the tendency among central banks
to adjust the short rate in several consecutive moves in the same direction,
and to change the direction only infrequently. The literature has given some
attention to the origins of this behavior and several possible explanations
have been suggested. For a review together with some empirical evidence see
Sack and Wieland (1999).
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Below we study the monetary authority's control problem for each of the
cases interest rate stabilization and interest rate smoothing. In both speci­
fications we constrain the study of the optimal control law to the limiting
case p 1O. This is not uncommon in the literature (see e.g. Svensson (2000))
and in the case of interest rate stabilization it also admits an analytical so­
lution. In case the state variables have ergodic distributions £1 and £2 can
be written more conveniently as

£1 = qvar(xt) +var(rt),

£2 == q var (Xt) + var (Ut) ,

where var (Xt), var (rt) and var (Ut) denote stationary variances. Note in par­
ticular that £1 and £2 lose their dependence on x and (x, r).

3.3 Interest rate stabilization

In the case of interest rate stabilization a statement of the monetary author­
ity's minimization problem is

VI (x) == min £1 (x) ,
r

where

where Xt follows the process

dXt == - {a (Xt - x) + b (r (Xt) - r)} dt + adwt,

Xo == x,

and where the control r is subject to the constraint

\It> O.

Had it not been for the constraint this minimization problem would have
been a standard application of the linear-quadratic regulator, in which case
the optimal control law is linear (or affine) in the state variables. This control
law can be seen as the limiting law as r -7 00. 1 For reference this is stated
as a lemma.

1 That is for a fixed value of x, as if ~ 00 the control laws for the constrained and
the unconstrained problems converge. Letting if approach infinity is conceptually
equivalent to a relaxation of the lower bound.
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Lemma 3.1. For the unconstrained problem the optimal control law is given
by

rfree (x) = A (Xt - x) ,

where

A = -ajb + J(ajb)2 + q.

Proof. See Appendix 3.11.

As a standard result in linear-quadratic optimal control the unconstrained
law is independent of the volatility a. This implies in particular that the
control law for the corresponding deterministic problem, Le. with a = 0, is
the same. This will not be the case when the constraint is taken into account.
For a = 0 the solution to the constrained problem is the non-negative part
of the unconstrained law, that is

rdet (x) = max {rfree (x) ,O} .

For a > 0 the optimal law is given by Theorem 3.1.

Theorem 3.1. For the constrained problem the optimal control law can be
written as

r (x) = max {r¢ (x) ,O},

where

_ tzM (1/2, a; z)
'Ij;(x) =Tfree(x)+>'(x-x) M(lj2,a;z) ,

z = ~ (x - x)2 ,

where 1\11 is a version of the confluent hypergeometric function and where the
determination of the constants a, A and K, are deferred to Appendix 3.11.

Proof. See Appendix 3.11.

The control law r (x) for a > a is below or equal to rdet (x) for all values
of x with equality exactly where rdet (x) = o. Thus volatility in Xt induces a
more expansive policy. One consequence of this is that with a > 0 the zero
bound is hit earlier, that is for a higher value of x. For reference we define x*
to be the value of x where the constraint activates. This is given implicitly
by r¢ (x*) == o.

Another consequence of the more expansive policy is that the steady state
in the economy is reached at a value of x that exceeds x. The steady state is
defined as the value X ss for which the drift term of Xt equals zero, Le. where

a (x ss - x) + b (r (x ss ) - if) = O.

Because the left hand side is monotone in X ss and because r is strictly below
rfree whenever u > 0, it follows that equality obtains for an X ss that is strictly
higher than in the corresponding unconstrained problem.



66 3. Optimal monetary policy, the zero bound and the term structure of interest rates

3.4 Numerical examples on stabilization

This section presents numerical examples to illustrate the mechanics of the
model. Our benchmark setting for the parameters is as follows.

a
0.01

b
0.15

a
1.5%

r x q

3.5% 0 3
(3.2)

The values for a, b, a and r are in line with the simple regression below,
except that (J" and r have been somewhat adjusted to make the graphical
presentation more accessible. The value for x is arbitrary and therefore set
equal to zero. The value for q is set to give a reasonable volatility of the short
rate.

To motivate the parameter constellation in (3.2) and in order to acquire
some intuition for the state variable Xt we pursue a simple estimation of
parameters based on US data 1987 - 2002. We consider the short rate Tt as
the three-month treasury rate, inflation 'ITt as the implicit GDP deflator and
the output gap Yt as estimated by the Congressional Budget Office (2002).
All data is quarterly. We detrend inflation and the output gap by deducting
their sample means, and we then regress Tt on 'ITt and Yt. This yields

Tt = 5.5% + 1.171rt + 0.54Yt
(0.15%) (0.14) (0.10)

with asymptotic standard errors in parentheses. In terms of the model a
natural definition of the state variable Xt is then

Xt = W1T t + (1 - w) Yt

with W = 1.17/ (1.17 + 0.54) = 0.68. This suggest that the monetary author­
ity follows the rule Ut = if + AXt with A = 1.71 and if = 5.5%. Assuming
that Xt is governed by the process (3.1) we then regress yearly increments in
Xt on Xt-l and Tt-l. Without a constraint on a the estimate for b is nega­
tive, and we therefore impose a = 0 so that if left uncontrolled Xt would be
unstationary. This gives

Xt - Xt-l = - 0.15 (Tt-l - if) + G.Ollc-t.
(0.065)

A similar estimation using data for Japan 1980-2003 gave similar results,
except that the sample mean of the treasury rate was lower, 3.3%.

For the benchmark constellation (3.2) Figure 3.1 depicts the optinlal con­
trollaw. Whenever T > 0 the constrained law is below the unconstrained, so
taking account of the zero bound results in a more expansive policy. When
x = 0 the constrained law is some 0.15% below the unconstrained. As x
beconles large the two laws converge; asymptotic convergence is at the rate
1/x.
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The constrained law exhibits a kink at x* = -3.19% as the constraint
activates. It is worth noting how the constraint activates. As x falls the short
rate accelerates towards zero hitting the barrier with positive speed. This ap­
pears to be in contrast with monetary policy in Japan over the last decade.
The zero bound was approached gradually with small adjustments. In partic­
ular short rate volatility fell, indeed in contrast with the model which suggests
that short rate volatility should increase.

The constrained law corresponds well to the results of Orphanides and
Wieland (1999) and Kato and Nishiyama (2001). These papers consider a
setting with two state variables, inflation and the output gap, which gives
the optimal control law as a function of two variables, and they solve the
control problem numerically. Still, their short rate appears to hit the zero
bound in a similar manner as in our model, and their control law also appears
to converge to the unconstrained law in a similar way.
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Figure 3.1. Optimal control law in the constrained (solid) and the unconstrained
(dashed) problem. Parameter assessments as in (3.2).

Figure 3.2 illustrates the effect of changing volatility. As (J approaches
zero the control law approaches r det (x). For (J = 1% the difference between
the two is hardly economically significant.
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Figure 3.2. Optimal control law for a = 2% (bottom thick), a= 1.5% (middle
thick) and a= 1% (top thick). Apart from (j parameter assessments as in (3.2).

To gain some further perspective on the mechanics Figure 3.3 depicts
what is similar to an impulse-response graph. Starting at xQ = -5% we
study one particular path for Xt, the one corresponding to Wt = 0 for all t.
Because XQ < x* the short rate is initially at the lower bound. As Xt passes
x* = -3.19%, which occurs at approximately t = 3 years, monetary policy
immediately becomes significantly more active.
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Figure 3.3. Optimal control law as a function of time when Xt follows
dXt= -{ a(Xt - x) + b(rt - r) }dt. Solid line rt and crossed line Xt. Time axis
in years. Parameter settings as in (3.2).
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3.5 Interest rate smoothing

In the case of interest rate smoothing the control problem becomes more
involved and for the full constrained problem we do not have an analytical
solution. We begin the study with a ~formal statement of the minimization
problem and give its solution in absence of the constraint. Proceeding with the
constrained problem we then consider the deterministic case first since this
can be solved with the method of Pontryagin, and we finish with an outline
of the numerical procedure to approximate the solution to the stochastic
problem.

A statement of the monetary authority's minimization problem is

V2 (r, x) = min L2 (r, x) ,
u

where

£2 (r, x) = ~N pEr,x [100

exp (-pt) {q (Xt - £)2 + u~} dt] ,

as rt and Xt follow

with initial values

{
ro = r,
Xo =x,

and where the state variable rt is subject to the constraint

rt 2: 0, Vt > O.

When working with a constrained control problem it is highly desirable to
have the constraint on the control rather than on one of the state variables.
Fortunately we can rephrase the constraint as a constraint on the control
since we simply require that Ut ~ 0 whenever rt = o. We define the set of
admissible controls as

U = {Ut : Ut 2: 0 whenever rt = O}.

Without the constraint the problem is a version of the linear-quadratic
regulator with an optimal control law that is affine in the state variables.
Lemma 3.2 gives the optimal unconstrained law.



70 3. Optimal monetary policy, the zero bound and the term structure of interest rates

Lemma 3.2. For the unconstrained problem the optimal control law is given
by

Ufree (r, x) = B (r - r) + C (x - x) ,

where

B = a- Ja2 + 2b..,fij,

Proof. See Appendix 3.12.

As a consequence of the linear-quadratic form the unconstrained law is in­
dependent of the volatility a, and in particular the control law for the cor­
responding deterministic problem is the same. This will not hold for the
corresponding constrained problem.

For the constrained problem the deterministic case a = 0 can be solved
with the Pontryagin minimum principle. This solution technique is inherently
different from that of optimal control as it for given initial values of the state
variables characterizes the solution in terms of an optimal path for u, Le. U

as a function of time. We are usually interested in the solution on feed-back
form, Le. u as a function of r and x, and then the optimal control approach is
more natural. If this is not successful Pontryagin's principle is however worth
pursuing.

The implementation of the program was rather straightforward although
it involves a numerical one-dimensional optimization. The n1ethodology is
outlined in Appendix 3.13. Because the integral in the loss function remains
well-defined even as p 10 there is no need to pre-multiply by p, and we define
the value function corresponding to the deterministic problem, Vdet (r, x),
according to

Vdet (r, x) = min ["XJ {q (Xt - x)2 + u;} dt,
uEU io

as

{
Tt = Ut,

Xt = -{a(xt -x) +b(rt -r)}.

The corresponding control law is denoted Udet (r, x).
For the case a > 0 we adopt a numerical procedure. We are interested in

the case p = 0 and in the literature on optimal control this is known as aver­
age cost minimization, see e.g. Arapostathis, Borkar, Fernandez-Gaucherand,
Ghosh and Marcus (1993) for a review. It is common to rephrase the prob­
lem with a finite horizon T and consider the limiting law as T ~ 00. For a
numerical implementation this approach is also more natural since we can
iterate the value function with increasing values of T.

Next, in comparison with many other control problems in economics
volatility is likely to be small and consequently one can expect the control law
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to be close to Udet (r, x ). We therefore use the deterministic value function
Vdet as a final value function. Thus we consider

V T (r,x) = min Lr
U

with

L{ = ~Er,x [iT {q (Xt - X)2 + u~} dt +VdedrT,XT)] .

For this problem the optimal control law is no longer time homogenous and
Ut = uT (r, x, t) with calender time t as an additional argument. The idea
is that as T approaches infinity the initial control law uT (~, x, 0) should
converge to the control law of the original problem, u (r, x). This will hold
provided that

It has not been shown that this convergence holds, but it will hold if Xt and
Ut are sufficiently well-behaved under the optimal law. This is discussed in
Arapostathis et al.

When applying a numerical procedure to this problem, the fact that one of
the state variables is locally deterministic complicates the issue of numerical
stability. Noise in the state variables tend to smooth irregularities, and it is
therefore common to consider a slightly perturbed problem with noise in all
state variables, see e.g. Goodman, Moon, Szepessy, Tempone and Zouraris
(2002). Adding a noise term to the process for rt state dynamics is given by

with Wc;t a standard Wiener process independent of Wt, and ac; > 0 a small
constant. With this process for rt the constraint rt ~ 0 is no longer feasible,
so we redefine the set of admissible controls as

u' = {Ut : Ut ~ 0 whenever rt ~ O}.

To now solve the problem numerically the value function is updated recur­
sively according to

V[k] (r x) = min L[k] (r x)
, UtEU' "

where
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for k = 1,2, ... , with Llt a small time step and with the initial value for V[k]

as

V[O] (r,x) = Vdet (r,x).

The recursion is carried out on a grid over rand x. At each gridpoint V[k-l]

is locally approximated with a quadratic function, which produces a standard
linear-quadratic control problem, for which standard solution techniques ex­
ist. The method works well except close to the constraint where the quadratic
approximation is worse. In this region V[k-l] is approximated with a differ­
ent functional form and the local control problem is solved numerically. The
above procedure works but is slow and requires some 30 hours on a 1000MHz
computer. The procedure is outlined in Appendix 3.14.

3.6 Numerical examples on smoothing

For our numerical examples we use the following benchmark setting for the
parameters.

a
0.01

b
0.15

a
1.5%

f

3.5%
x q
o 3

(3.3)

For the numerical approximation we set a c = 0.1%. The weight q does not
have the same meaning as in the case of interest rate stabilization and it is
not immediate how to assess an appropriate value. Previous studies usually
consider two target variables, inflation and the output gap, and results are
therefore not directly comparable. Still, in this instance the objective function
assumes three weights, q-rr, qy and qu corresponding to inflation, the output
gap and smoothing respectively. Soderstrom, Soderlind and Vredin (2002)
report that for the US typical estimates are such that qu/q7r is in the range 0.5
to 2 and qy/q7r is less than 0.1. Using term structure data Skallsjo (2002) finds
qu/q-rr = 0.32 and qy/q-rr = 0, also for the US. If comparable the corresponding
figure for the parameter constellation (3.3) is 1/q = 0.33.

In principle it should be possible to estimate the model with maximum
likelihood, but this is not so straightforward due to the numerical computa­
tion of the control law. In ongoing research, not reported here, the control
law is approximated and the model is estimated using term structure data
for Japan. This leads to a value of q equal to 3.7 with a standard error of
1.35.

For the parameter constellation (3.3) the optimal control law u(r,x) is
depicted in Figure 3.4. Along the line r = 0 we have the constraint u ~ o.
There is a critical value x* such that for x < x* the monetary authority
would like to set u < 0 but is constrained to u = o. For x > x* the monetary
authority has no desire to lower rt and selects an admissible control u > O.
For current parameter settings x* = -1.48%.
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Figure 3.4. Optimal control law. Parameter settings as in (3.3).

Figure 3.5 displays U in comparison with ufree, this time at a more distant
view. Similarly to the case of interest rate stabilization the control law can
be both above and below its unconstrained counterpart. We have U < ufree

whenever x is sufficiently high, which appears to be x > x*. As x --7 00 the
controls converge. We also have U < U free for any x provided r is sufficiently
high, and as r --7 00 the solutions diverge. For a fixed x as r --7 00 the drift
term for Xt becomes negative and high in magnitude, which pushes future
expected values of Xt below x. It is then urgent to bring rt to the zero bound
more quickly and as a consequence the constrained control law is below the
unconstrained.

We have U > ufree whenever x is sufficiently low and r is sufficiently
close to zero. In this region the problem exhibits an important difference to
the case of interest rate stabilization. For a fixed x < x* letting r t 0, U

approaches zero smoothly. Consequently one would expect rt to approach
zero smoothly with small adjustments, in contrast to the case of stabilization
where the optimal control law was as most responsive when rt was close
to zero. Recalling the discussion on the Bank of Japan, in this regard a
smoothing objective for the short rate seems to better capture their policy
over the last decade.

A natural question at this point is wether the zero bound will ever be
reached, and it can be shown that with the smoothing objective rt will reach
zero in finite time with probability one.
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Figure 3.5. Optimal control law in the constrained (grey) and unconstrained (black
wireframe) Parameter settings as in (3.3).

To assess the role of volatility Figure 3.6 depicts U in comparison with
Udet, and Figure 3.7 the difference U - Udet. From Figure 3.7 it appears that
U ~ Udet for all values of r and x with equality exactly as x ~ x* and
r = O. This is in line with the results for interest rate stabilization where
introducing volatility resulted in a more expansive rule whenever r was above
zero. Further it appears from the graph that the value of x* does not vary
with o. Loosely speaking one would expect the stochastic control law to be
a smoothed version of the deterministic law. It appears that smoothing at
x = x* works by flattening out the control law to the right of x*, keeping the
value of x* unaffected.
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Figure 3.6. Optimal control law in the stochastic (grey) and deterministic (black
wireframe) problem. Parameter settings as in (3.3).
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Figure 3.7. The difference U - Udet. Parameter settings as in (3.3).
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Figure 3.8 depicts the equivalent to Figure 3.7 for various values of a. As
in the case of stabilization, for a = 1% the difference between the stochastic
and the deterministic control laws is small.

~()*()4
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Figure 3.8. The difference U - Udet for a=l% (top), 0-=1.5% (middle) and 0-=2%
(bottom). Parameter settings as in (3.3).

In Figure 3.9 we give the corresponding item to Figure 3.3, the impulse­
response graph. Starting the system at (r, x) = (1.5%, -2.5%) we study paths
corresponding to Wt = 0 for all t (as well as Wgt = 0 for all t). Initially Ut < 0
and rt falls, hitting the zero bound after t = 0.9 years. The short rate then
remains at zero until Xt stabilizes to x* == -1.48% which in the figure occurs
after t == 2 years. Then rt is successively adjusted back towards the steady
state, though initially very slowly. For current parameter settings as t ~ 00

paths are oscillating with diminishing amplitude. This holds true also for the
unconstrained problem.
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Figure 3.9. Optimal control law as a function of time when state dynamics is
drt= Utdt and dXt= -{a(Xt - x) + b(rt - r)}dt. Solid line rt and crossed line
Xt. Time axis in years. Parameter settings as in (3.3).

We conclude this section with a note on the steady state. Figure 3.10
depicts a vector field of the state dynamics. The steady state obtains at ap­
proximately (rss , xss ) = (3.47%,0.58%) to be compared to the free problem's
counterpart (3.5%,0). For X ss we note that the inclusion of the constraint
implies an X ss that is higher than its unconstrained counterpart, which is
directly comparable to the case of stabilization. For current parameter as­
sessments the difference, 0.58%, is somewhat higher than the corresponding
0.15% in the case of interest rate stabilization. However, since the parame­
ter q has a different meaning in the two models, the result should not be
overemphasized.

Figure 3.10: Vector field of dynamics in the stochastic constrained problem. Motion
in X (along the y-axis) multiplied by a factor 10. Parameter settings as in (3.3).
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3.7 Some empirical background

Before looking at model implications for the term structure of interest rates
we give some empirical background. Japan with its prolonged period of de­
flation and interest rates close to zero makes a natural example.

Figure 3.11 depicts time series of the short rate r t, measured by the central
bank's discount rate, inflation 1rt, measured by the implicit GDP deflator and
the output gap Yt as estimated by IMF.
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Figure 3.11. The Bank of Japan discount rate (solid), inflation (crosses), and the
output gap (circles).

Figures 3.12 and 3.13 depict a series of yen yield curves and yield volatility
curves over the period 1996 - 2003. Supplementary graphs for intermediate
dates are given in Appendix 3.16. Data refer to swap rates, which are not
directly comparable to the analysis in the remainder of the paper but patterns
should be similar.

Over the period yields fall rather steadily except for a rebound in 1998
- 1999. For the initial dates, in 1996 and 1997, we infer from Figure 3.11
that inflation is around zero while the output gap is slightly positive. For
these dates yield curves and yield volatility curves are both concave. The
initial volatility curve, in 1996, exhibits the characteristic hump familiar from
other currencies and more normal monetary circumstances. In 2001 and 2003
inflation and the output gap have both fallen to around -2%. For these dates
yield curves and yield volatility curves assume a different shape. In 2001 the
yield curve is slightly s-shaped and in 2003 the s appears to have flattened
out to the right. Volatility curves exhibit a similar pattern.
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Figure 3.12. Swap rate curves. Swap rates refer to the beginning of the indicated
month.
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Figure 3.13. Swap rate volatility curves. Volatility curves depict the daily standard
deviation in the swap rate for a given maturity over the six months following the
indicated date.

3.8 The term structure in the case of stabilization

In this section we take as given the state dynamics implied by the model
in Section 3.3 and investigate implications for the term structure of interest
rates. We follow the standard approach in term structure modelling, forming
the price of a unit discount bond with n1aturity T as
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where superindex Q indicates that the expectation is taken under the risk­
neutral measure. In general the risk-neutral measure will be different from the
objective measure, a fact that could be accounted for by assuming a parame­
terized form for the market price of risk. Here, in order to make the analysis
more transparent we take the simplified route and assume risk-neutrality. We
can then write

To solve for bond prices a numerical procedure is required. Fixing a small
time step Llt bond prices are calculated recursively according to

F (x; 0) := 1,

F (x; kL1t) = exp ( _lL1t

r s (x) ds) Ex [F (XL1t, (k - 1) L1t)] ,

rt (x) == Ex [r (Xt)] ,

for k := 1,2, ... For rt (x) the expectations are approximated using local
approximations of the dynamics of Xt as well as of the functional form for r.
Local time has been applied to take account of the kink in r. The procedure
is outlined in Appendix 3.15, together with a proof that the recursion indeed
converges to the true prices as Llt 1o.

We focus our analysis on yields and yield volatilities. Given a bond price
F the yield is defined as

y (x; r) := - (l/T) x InF (x; T).

The yield volatility is then obtained as

d
v(x;r):= dxy(x;r) x 0".

Figure 3.14 depicts yield curves for various values of the target variable
x with parameter settings as in (3.2). Note that for x < x*, in this case
-3.19%, the initial short rate is constrained to zero. One implication of this
is that for x < x* curves assume a convex shape for low maturities, moving
to concave for higher maturities. The change in curvature produces an s­
shape, though for current parameter settings this is weak - there are extended
segments around the inflection point where curves are close to linear. The
change in curvature obtains only if the initial short rate is zero. This need
not be a serious limitation, but it may demand an open mind regarding the
interpretation of the zero bound.
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Figure 3.14. Yield curves. Maturity axis in years. Parameter settings as in (3.2).

For the parameter constellation (3.2) used in Figure 3.14, to obtain a yield
curve below 1% for all maturities up to ten years x must be some 6% below
its target value. From Section 3.4 we recall that a rough interpretation of
x is deviation from target inflation. To explain a yield curve below 1%, the
market should thus perceive inflation to be 6% below its target value. This is
certainly possible but it would be comforting if more moderate values would
suffice. Furthermore, we have calculated yield curves under risk-neutrality.
With a positive market price of risk yield curves should be more upward
sloping, which in turn would require an even lower value of x.

We conclude that model implied yield curves are reasonable, possibly with
two sources of concern. First, curvature in model implied curves is weak and
second, the value of x required to explain a low level of the yield curve, below
1% for maturities up to ten years, may be excessive. Both these results may
in part be due to the high value of a (equal to 1.5%) and for this reason
Figure 3.15 displays yield curves corresponding to the more modest a = 1%.
In this case the control law is close to max {U free (x) , O} and x* = -3.56%
(cf. Figure 3.2). The lower a helps to resolve both issues, though not to full
satisfaction and in particular curvature is still weak. As noted in Section 3.4
it is possible that the short rate inhibits an excessive sensitivity to x.
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Figure 3.15. Yield curves. Maturity axis in years. Parameter settings as in (3.2)
except a= 1%.

The yield curves' dependence on volatility is depicted in Figure 3.16.
'Changing volatility affects the yield curve in several ways. As in most term
structure models higher volatility in the state variable implies a higher ex­
pected capital gain on long term bonds. If investors are risk-neutral they then
require a lower yield, and increasing volatility therefore tends to decrease long
term yields. In the current constrained problem there are other effects also
that tend to dominate when the short rate is close to zero.

First, the short rate is a non-linear function of the underlying state vari­
able. Keeping the functional form fixed, when r is low increasing volatility
increases the expected value of future short rates, thus elevating long term
yields. This is comparable to the effect volatility has on regular options. A
second effect is that as we increase volatility the monetary policy rule adapts
and becomes more expansive. This works in the opposite direction. In the first
graph of Figure 3.16, when x is relatively high, the latter effect (the adjust­
ment of the monetary rule) dominates and higher volatility implies a lower
yield curve. In the remaining graphs, when x is low, the former (option-like)
effect dominates and higher volatility implies a higher yield curve.
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Figure 3.16. Yield curves for different values of a and x. Maturity axis in years.
Parameter settings apart from a as in (3.2).

Figure 3.17 depicts yield volatilities for various values of x. The short rate
volatility is of particular interest and is given by

v (x; 0) = {~ar~ (x*) ,
ar' (x)

x < x*
x = x*,
x> x*

where r' is the derivative of the control law from Theorem 3.1 and where
subindex '+' indicates limit from the right. Thus the short rate volatility is
discontinuous in x. At x = x* it is simply the average of volatility to the left
and to the right. In Figure 3.17 this occurs at x = -3.19%.

Comparing the volatility curves for x > x* we see that they intersect.
This follows as the optimal rule is as most responsive when x is above but
close to x* . In this region for x yield volatilities for short maturities are high,
while the probability of hitting zero dampens the volatility in higher maturity
yields. As x -+ 00 the volatility curve converges to that of the unconstrained
problem, which in turn is a version of Vasicek with an exponential decline.
The limiting curve is close to the one corresponding to x = -0.19% in the
figure.
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For x < x* we have r = 0 and the initial volatility is zero. Volatility curves
then exhibit a hump. With lower values of x the hump is transferred to the
right and becomes less pronounced. Similarly to the yield curves, when x < x*
volatility curves are initially convex moving to concave for higher maturities.
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Figure 3.17. Yield volatilities in the constrained problem for different values of x.
Maturity axis in years. Parameter settings as in (3.2).

3.9 The term structure in the case of smoothing

We now turn to interest rate smoothing and study the inlplications for the
term structure of interest rates, again under the assumption of risk-neutrality.
We calculate bond prices numerically and adopt a recursion similar to that
in the previous section. Letting F (r, x; r) denote the price of a unit discount
bond with maturity r for initial values (r, x) we fix a small time step Llt and
apply the following procedure for k == 1,2, ...

F(r,x;O) == 1,

F (r,x; kL1t) = exp ( _lLlt
r s (r,x) ds) Er,x [F(rLlt,XLlt, (k -1) L1t)],

rt (r,x) == Er,x [rt].

The recursion is performed on a grid over r and x. Because we calculate
prices under risk-neutrality rt (r,x) is immediately available from the numer­
ical approximation to the control problem. For the expectation of F we make
a local approximation of In F according to a quadratic functional form over
rand x. The distribution for (rL1t,xL1t) is approximated according to a bi­
variate normal, and with these approximations the expectation of F can be



3.9 The term structure in the case of smoothing 85

calculated. Close to the zero bound the quadratic approximation for In F is
worse and a different functional form is used.

As in the previous section given a bond price F we define its yield ac­
cording to

y(r,x;r) = -(l/r)lnF(r,x;T).

For the yield volatility we define

d
v(r,x;T) = dxy(r,x;T) x a.

For v we thus neglect the term ac that was imposed in the numerical approx­
imation.

Yield curves now take two arguments, rand x. In Figure 3.18 we set
r == 0 and depict yield curves for various values of x. For current parameter
settings x* = -1.48%. Since the initial short rate is zero for all the curves,
low maturity yields do not vary much with x. For high maturity yields the
dependence on x is stronger.

As in the case of stabilization curves exhibit a convex and a concave
segment, though with smoothing convexity is more pronounced. The reason
is that with a smoothing objective the control law is close to zero in a region
around (r, x) = (0, x*). Therefore, even if Xt should stabilize quickly the
control law remains close to zero for some time. This implies that rt leaves
zero smoothly and slowly. Further away from zero the control law is more
sensitive to variations in x, and as a consequence in this region the short rate
is more responsive.
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Figure 3.18. Yield curves for different x with r fixed at r = O. Maturity axis in
years. Parameter settings as in (3.3).
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In the previous section we raised a question regarding the value of x
needed to obtain a low level of the yield curve, below 1% for all maturities
up to ten years. The required value of x seemed excessive, though this partly
was resolved by considering a lower value of a, equal to 1%. Figure 3.19
depicts yield curves under smoothing for C1 = 1%. The curve corresponding
to x = -5% is below 1% with some margin, and in comparison with Figure
3.15 the value of x required to obtain a low level yield curve is more moderate.
Again the result follows from the fact that the short rate leaves zero smoothly.
However, as the parameter q has a different meaning in the two specifications
the results should not be overemphasized.
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Figure 3.19. Yield curves for different x with r fixed at r =0. Maturity axis in
years. Parameter settings as in (3.3) except a= 1%.

The yield curves' sensitivity to a is depicted in Figure 3.20. As in the
case of stabilization there are two major counterweighing effects. First, the
control law is a convex function of x. Keeping this functional form fixed
there is an option-like effect, by which an increase in volatility gives higher
yields. The second effect is that with an increase in volatility the control law
adjusts and becomes more expansive, and this works in the opposite direction.
When x is relatively high the latter effect (the adjustment of the monetary
rule) dominates, and in the first exhibit in Figure 3.20 higher volatility is
associated with a lower yield curve. When x is low the former (option-like)
effect dominates, and in the two lower exhibits of Figure 3.20 higher volatility
is associated with a higher yield curve.
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Figure 3.20. Yield curves for different values of a and x when r =0. Maturity axis
in years. Parameter settings apart from a as in (3.3).

Now turning to yield volatilities we again set r = 0 and study the de­
pendence on x. Curves are depicted in Figure 3.21. As x --+ 00 the volatility
curve converges to that of the unconstrained problem, which is close to the
one corresponding to x = 0 in the figure. The well-pronounced hump follows
from monetary policy inertia. Because the short rate is locally deterministic
volatility in the target variable does not transmit directly into volatility in
the short rate, but induces uncertainty about the average short rate over a
given horizon. This causes the volatility curve to be initially upward sloping.
Over the longer horizon however the system is stabilized, and this causes
curves to be downward sloping at the long end.

The volatility curves exhibit both convex and concave segments. For low
values of x curves are initially convex moving to concave for higher maturi­
ties. This is also what we found in the case of interest rate stabilization. A
difference between the two specifications is however that with smoothing the
convex segment is more pronounced. More specifically, the inflection point
generally obtains at a higher maturity. For example, the curve corresponding
to x = -4% has an inflection point at a maturity of approximately 4 years,
while in Figure 3.17 the location of the inflection point does not exceed 2
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years for any of the curves. This finding is similar to what we found for yield
curves above.
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Figure 3.21. Yield volatilities for different values of x when r =0. Maturity axis in
years. Parameter settings as in (3.3).

So far we have set the initial short rate r = O. In Figure 3.22 we set r == 2%
and let x vary. Again we focus on low values of x. In each scenario the short
rate is expected to first decrease as Xt is stabilized, and then successively
adjust back towards the steady state (cf. Figure 3.9). The depicted values
of (r, x) are chosen for illustrative purposes. For example, conditional on
x == -5% it is unlikely to observe an r as high as 2%, as in this region for x
the short rate adjusts very quickly. The figure nevertheless illustrates a wide
range of possible yield curves.
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Figure 3.22. Yield curves for different x when r =2%. Maturity axis in years. Pa­
rameter settings as in (3.3).
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Figure 3.23 depicts the volatility curves corresponding to the previous fig­
ure. A striking characteristic is the double hump assumed for the lower values
of x. Curves are initially upward sloping but then follows a set of maturities
where curves are downward sloping. In this range the short rate is expected
to be close to the zero bound. For higher maturities the usual argument with
monetary policy inertia applies, and hump number two obtains, though for
the lower values of x this is located outside the picture.

We can conclude that the model allows for a broad collection of both yield
curves and yield volatility curves when the short rate is close to zero.
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Figure 3.23. Yield volatilities for different values of x with r fixed at r =2%. Ma­
turity axis in years. Parameter settings as in (3.3).

3.10 Conclusion

The paper has investigated two formulations of the objective function of
monetary policy - interest rate stabilization and interest rate smoothing ­
and their implications for term structure dynamics. We have put particular
emphasis on situations when the short rate is close to zero. An important dif­
ference between the two formulations is that with smoothing the short rate is
locally deterministic. With regard to term structure dynamics this translates
into a lower volatility in short-term yields. We find that when the short rate
is close to zero this effect is amplified. Indeed, in one aspect the zero bound
affects the optimal control law diametrically different in the two specifica­
tions. With interest rate stabilization the short rate is as most responsive
to changes in the target variable just above the zero bound, whereas with
smoothing responsiveness is at its weakest in this region. The implications
for the term structure is that with smoothing the lower volatility obtained
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for short term yields transmits into higher maturity yields. This results in
a more pronounced convexity in the initial segment of the yield curve. The
same holds for yield volatility curves.

Using data for Japan it is in principle possible to put the two specifi­
cations to a formal test against each other. This exercise is conlplicated by
the numerical approximations, which makes a more exact computation of
bond prices time-consuming. Less accurate numerical approximations result
in irregularities in the likelihood function, which implies that standard auto­
matic optimization routines do not apply. However, because the number of
parameters is small a manual search algorithm may be feasible.

An interesting extension of the model concerns the monetary transmission
mechanisnl. The literature on monetary policy emphasizes the importance of
forward-looking behavior, whereas the model studied in this paper is purely
adaptive. The continuous time framework may however be well suited for
studying forward-looking behavior.
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3.11 Appendix. Control laws in the case of stabilization

This appendix presents the solutions to the control problems in Section 3. We
may without loss of generality set x == o. We begin with the unconstrained
problem and then turn to the constrained.

3.11.1 The unconstrained problem

We begin with the unconstrained problem. For p > 0 we consider

v (x; p) = ~!n Ex [100

e-pt {qX~ + (r (Xt) - 1')2} dt] .

Note that the expectation term has not,been pre-multiplied by p. The HJB
equation for this problem is

o== min {-PV + qx2 + (r - 1')2 - (ax + b(r - 1')) Vx + !a2vxx } ,
r 2

where subindices indicate derivatives.
We are interested in the limiting problen1 as p 1 o. In the literature

on optimal control this is referred to as average cost minin1ization, see e.g.
Arapostathis, Borkar, Fernandez-Gaucherand, Ghosh and Marcus (1993) for
a review. Although the value function in this case becomes unbounded, a
limiting control law may still exist. This is obtained from a limiting form of
the HJB equation known as the average cost optimality equation. Even if
V becomes unbounded the tern1 pV may still have a limit that is finite. We
denote this limit by c and assume it is independent of x. A sufficient condition
for the existence of such a c is that (Xt, r (Xt)) has an ergodic distribution
under the optimal law. In that case c is given by

(3.4)

Letting p 10 the HJB equation becomes

o= ~!n{-c + qx2 + (r - 1')2 - (ax + b (r - T)) VX + ~a2vxx } , (3.5)

which is the average cost optin1ality equation for the problem. Finding a
function v (x) and a scalar c > 0 such that (3.5) holds we obtain a candidate
solution to the problen1, although actually establishing the implied control
law as the optimal law for the original problen1 can be more involved.

Proceeding with the equation (3.5) the optimal r is given by

r == if + (b/2) vx •

Substituting into (3.5) v should solve



92 3. Optimal monetary policy, the zero bound and the term structure of interest rates

2 (b/2).2 2 1 2o= -c + qx - Vx - axvx + 2"a Vxx •

A particular solution is given by

VeX) = (A/b)x2,

A = -a/b + V~(a-/-b)-2-+-q,

which works for

c = a 2 A/b.

The candidate control law is thus given by

r (x) = r + Ax.

(3.6)

For this control law it can be verified that (3.4) holds. It remains however
to verify that r (x) is indeed the optimal law, and this causes some problems
as we do not have a verification theorem for the limiting case p 1 o. We do
however expect v to be asymptotically quadratic, and one way to establish
r (x) as the optimal control law is to calculate the general solution to the
differential equation (3.6) and rule out solutions that grow at a rate higher
than x 2 as x ---? ±oo. It can be verified that this indeed results in the control
law r (x) above. This argument is also pursued below.

3.11.2 The constrained problem

For the constrained problem the average cost optimality equation becomes

o= ~~g{-c + qx2+ (r - rl- (ax + b(r - 1')) Vx + ~a2vxx } , (3.7)

where c is a constant, not the same as above. In light of (3.4) we expect c
this time to be greater than a 2 A/b.

The optimal r is given by

r = max {r + (b/2) vx , O}.

Substituting for r we obtain two versions of (3.7),

o= -c + qx2 - (b/2)2 v; - axvx + ~a2vxx, (3.8)

1o= -c + qx2+ 1'2 - (ax - br) V x + 2"a2vxx . (3.9)

where (3.8) holds when r = r+ (b/2) Vx and (3.9) holds when r = O.
The solution will be such that V x is monotone, and this implies in par­

ticular that there is one value of x, in the sequel denoted x*, such that (3.8)
holds to the right of x* and (3.9) to the left of x* .
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Starting with Equation (3.8) its general solution can be written as

vex) = (Alb)x2 +>'lnM (z;~,a) +C1 ,

z == ~x2,

where the constants A, A, a and ~ are given by

A = -alb ± ..j(alb)2 + q,

A == -2O'2 /b2
,

~ == b(A + a/ b) / 0'2 ,

a == (c - 0'2A/b) / (4o.4~) .
The constant 0 1 is an integration constant, which for our purposes is irrele­
vant. The function M is a version of the confluent hypergeometric function
to which we return shortly. For A we select the positive root since this gives
the optimal control law in the absence of the constraint. This implies that ~

and a are both positive.
The confluent hypergeometric function has two linearly independent solu­

tions and we follow the notation in Abromowitz and Stegun (1972) denoting
them by M and U. With this convention the function M grows at the rate of
exp (z2) as z -+ 00 while the function U declines at the rate liz as z -+ 00.

Because we expect the optimal control law to converge to that of the uncon­
strained problem as x -----t 00, we select the solution corresponding to U as
z -----t 00. To ensure that M remains continuous special care must however be
taken at z == O. We then obtain

M(Z.~ a) =={C2M(z;~,a)-u(z;~,a)z~O
'2' U(z;~,a} z>O'

with O2 == 2v:rrIr (1/2 + a) and with M and U the two independent solu­
tions as in Abromowitz and Stegun.

For the Equation (3.9) we have in terms of Vx a first order linear equation
with the general solution

V x == (qIa2
) (ax + br) + (cia) v:rr x exp (z2) {erf (z) + 03} ,

z == (ax - br) /Vaa2 ,

c = c - qa2I (2a) - (1 + q (bla)2) 1'2,

where 0 3 is an integration constant. We expect the optimal value function
to be asymptotically quadratic as x -----t -00 and because erf (z) has the
asymptotic expansion -1- (zv:rr) -1 exp (-z2) as z -----t -00 this requires that
we set 0 3 == 1.

It remains to determine the constant c and the value x* where the con­
straint activates. For this value of x we have the two conditions that V x and
Vxx should be continuous. Thus we have the two equations
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vx - (x*) = vx+ (x*) ,

vxx- (x*) = vxx+ (x*) ,

and the two unknowns x* and c. Subindices '-' and '+' indicate limits taken
from the left and right. From the latter equation it is possible to solve for c
as a function of x*, and substituting into the former equation this yields an
equation for x* that can be solved numerically.

3.12 Appendix. Smoothing: The unconstrained problem

We proceed as in Appendix 3.11 and form the average cost optimality equa­
tion for the problem. This is given by

o=m~ { -c + qx2 + u2 + UVr - (ax + br) Vx + ~(T2vxx } •

The optimal u is given by

u = - (1/2) vr ,

and inserting v should solve

1o= c + qx2
- (1/4) v~ - (ax + br) V x + "2(T2vxx •

A particular solution is given by

v (r,x) = -Br2
- 2Crx + Dx2

with

B = a - Ja2 + 2bvfii,

which works for

1 2
D= 2b2B (a-B),

This gives a candidate control law according to

u(r,x) = Br+Cx.

We lack a verification theorem to establish u as the solution to the original
problem. In the previous appendix this was resolved by considering the gen­
eral solution for v and then rule out control laws that were not asymptotically
quadratic, but here we do not have the general solution for v. It is however
possible to solve the problem for the case with positive discounting, Le. with
p > 0, and for this problem the verification theorem applies. It is then readily
verified that the control law for p > °converges to u as p 1o.
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3.13 Appendix. Smoothing: The deterministic case

Here we present the solution to the control problem in Section 5 in the special
case that a = O. Without loss of generality we set x = O. Following the
Pontryagin minimum principle we form the Hamiltonian

H (T, x) = qx2 + u2 + AltU + A2t (-ax - b(T - r)) + J-tt T,

where Al and A2 are the multipliers associated with the state variables Tt
and· Xt, and where ?It is the multiplier associated with the constraint. The
conditions for optimality are

1
Ut = -2"Alt,

~lt = -Hr ,

'\2t = -Hx '

Let Zt = [(Tt - r) Xt Alt A2t]'. In case the constraint.is inactive Zt satisfies

(3.10)

with

[

0 0 -1120]
-b -a 0 0

M= 0 0 0 b .

o -2q 0 a

Thus

Zt = exp (Mt) Zo,

where Zo is determined by boundary conditions. The initial values give us the
two conditions

I -elzo = TO - T,

e~zo = XO.

In absence of the constraint the two remaining conditions are that the mul­
tipliers Alt and A2t should vanish as t ~ 00,

lim e~ exp (Mt) Zo = 0,
t---+oo

lim e~ exp (Mt) Zo = o.
t---+oo

Solving for Zo solves the problem in the unconstrained case.
If the unconstrained solution results in a path that is admissible in that

Tt ~ 0 for all t, then we also have the solution to the constrained problem.
If however Tt < 0 for some t > 0 we must find a different path. In this case
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the solution is characterized by two instances in time, t == t where rt reaches
the lower bound for the first time, and t == t* > t where Tt leaves the lower
bound. For t E (0, f) the state vector Zt evolves according to (3.10) with rt

hitting the zero bound at t = f. For t E (t, t*) the short rate Tt remains at
zero while Xt stabilizes according to the equation

Xt == - (axt - br) .

At t = t* the target variable Xt reaches the value x* where the unconstrained
solution again becomes admissible, and for t E (t*, (0) the state vector Zt

evolves according to the unconstrained solution with initial values (T, x) ==
(0, x*).

The problem can now be solved numerically as a one-dimensional mini­
mization problem over t. It can be shown that the optimal path Tt is such
that Tt reaches the zero bound smoothly, i.e. with Tt = o. Thus, if the zero
bound is reached at t == f then Zo should satisfy

e~zo == TO - if,

e~zo == Xo,

e~ exp (Ml) Zo == -if,

e~ exp (ME) Zo == 0,

which is a linear equation for zo. For a given guess t we can calculate the
implied value function, and we can proceed numerically to find the optimal
f.

3.14 Appendix. Smoothing: The numerical
approximation

This appendix describes the numerical method to approximate the solution
to the stochastic control problem in Section 5. Without loss of generality we
set x == O. We apply a recursive procedure, where we in each step k == 1,2, ...
consider the problem

V[k] (T x) == min L[k] (T x)
, UtEU' "

with

as the state variables have dynamics according to

{
drt == Ut dt + O"edWet,
dXt == - (axt + b(Tt - if)) dt + adwt.

(3.11)
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The initial value for V[k] is given as

v[O] (r, x) == Vdet (r, x) .

We construct a grid for r and x on [rmin, r max] x [Xmin, xmax] equidistant
with L1r = 0.0005 and L1x = 0.0025. The same values for L1r and L1x were
used for all the parameter constellations considered in the main text. The
endpoints rmin, r max , Xmin and Xmax should be set such that the state vari­
ables' dynamics along the boundaries point into the grid. For rmin and Tmax

this requires respectively that u (r min, X) 2: 0 and U(Tmax, X) :::; 0 hold for
all x E [Xmin, x max]. The constraint gives Tmin == 0, but r max will in general
depend on parameter settings.

For Xmin and X max it is not possible to ensure drift into the problem for all
values of r. But fortunately along the x-axis the problem is less severe because
we can utilize the fact that the value function is asymptotically quadratic in
x as x ~ ±oo. For all the parameter constellations considered in the main
text we used

Tmin == 0, r max = 0.3, Xmin = -0.2, X max = 0.1.

For a given k and for a given gridpoint (T, x) we approximate the solu­
tion to (3.11) by making a local approximation of the value function V[k-l]

according to a quadratic function. Locally the problem then assumes a linear­
quadratic form with a quadratic endpoint function. The nature of the problem
is such that Tt in some regions takes on a very high drift, moving a consid­
erable distance even over the short time interval L1t. We therefore apply the
local approximation of V[k-l] not around (r, x) but around a point where Tt
and Xt are expected to be an instant L1t later. Defining

r~ (r, x) = Er,x [rtl ,

x~ (r, x) = Er,x [Xt] ,

the quadratic approximation of V[k-l] is made around (r~-l (r, x) ,x~-l (T, x)).
Although the local problem is linear-quadratic, the standard solution tech­

nique involves solving a continuous time matrix Riccatti equation, and this
requires numerical procedures. Since one such problem has to be solved at
each point of the grid, the technique becomes overly time-consuming. We
therefore approximate the problem by considering

r~t
L[kj (r, x) = J

o
(qXt2 + u~) dt + Er,x [V[k-l j (TLlt, XLlt)] ,

and

{
Tt = Ut dt ,
Xt=-(axt+b(rt- r)), '

where
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(3.12)

Because the endpoint function is quadratic this problem can be solved using
the method of Pontryagin for deterministic problems.

In the region where x < x* and r is close to zero the quadratic approxi­
mation is worse and we then use V[k-l] (r, x) ~ v (r, x) with

where r+ = max (r, 0), 9 is a quadratic function and where Cl and C2 are
constants. The functional form for v is motivated by a local examination
of the HJB-equation for the problem in the vicinity of the constraint. This
problem is solved numerically with Pontryagin.

After each iteration k the value function still exhibits some irregularities
close to the constraint and in this region we therefore apply a smoother. For
each x < x* we use ordinary least squares to fit the function

4

h (r) = Len (r+) (n+2)/2 ,
n=l

to V[k] (x,r) for r close to the constraint. In the estimation in the main text
this was done for x < x* and r E [0,0.075). The function h (r) was used to
replace V[k] for r E [0,0.0325) while linear interpolation between hand V[k]

was used for r E [0.0325,0.075).

3.15 Appendix. Bond prices in the case of stabilization

This appendix presents the numerical approximation of bond prices in the
case of stabilization. Fixing a small time step ilt bond prices are calculated
recursively according to

F (x; 0) = 1,

F (x; k.t1t) = exp ( _lLlt r s (x) dS) Ex [F (XLlt, (k - 1) .t1t)] ,

rt (x) == Ex [r (Xt)] ,

for k = 1,2, ... We begin in Section 3.15.1 by proving that the procedure
converges to the true bond prices as .dt 1 o. This is then followed by the
numerical computation of rt (x) in Section 3.15.2 and we finish with the
numerical approximation of the expectation of F in Section 3.15.3.
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3.15.1 Convergence to true prices

For a given maturity T the true bond price satisfies

and we would like to show that DLlt as defined by

D Llt (X,T) = f (X,T) - F (X,T)

approaches zero as L1t 10 for all T and x. We can write D as

DLlt (X,T) = exp (_l
Llt

rSdS) x

Ex [{exp ( _l
Llt

(rs- r s ) dS) - 1} exp ( - J~ rsdS)

+ {exp (- J~ rsdS) - F(XLlt,T - L1t)}] .

where the dependence on x for r s has been suppressed. By the triangle in­
equality we have

D~t(X,T) ~2Ex{[exp(-lLlt (rs-rs)dS) _1]}2

+2 {Ex [exp(- J~ rsdS) - F (XLlt. T - L1t)]r,
where we have used the fact that rt 2: O. For the first term we have

where 0 (Llt)2 / (Llt)2 ~ 0 as Llt 1O. For the second term we have

{Ex [exp (- J~ rsdS) - P(XLlt,T - L1t)]r~ Ex [D~t (XLlt,T - L1t)].

Thus

D~t (x, r) :::; 0 (L1t)2 + Ex [D~t (XLlt, r - Llt)]

~ 0(L1t)2 + Ex [0 (L1t)2 + Ex [D~t (XLlt, T - 2L1t)]]

and if L1t is an even fraction of T we obtain

D~t (X,T) ~ Ex [0 (L1t)2x T/L1t]

= Ex [0 (L1t)2 /L1t]

and the term inside the expectation converges to zero pointwise.



100 3. Optimal monetary policy, the zero bound and the term structure of interest rates

3.15.2 Approximation of rt (x)

By a generalization of Ito's rule (see e.g. Karatzas and Shreve (1988)) r (Xt)

can be written as

where At (a) is the local time of rt in the vicinity of a, r~ is the left limit
of the derivative and r" is the second derivative measure. Making a local
approximation of r according to

u (x) = max (co + CIX, 0)

we obtain

where x = -CO/Cl. To approximate the expectations we make a linear ap­
proximation of the dynamics for Xt. If

for constants J..Lo and J..Ll we have

Xt '" N (mt (x) ,v;) ,
mt = (X-J..LO/J-Ll)exp(-J..L1t)+J..LO/J..L1'
v; = 0'2 {I - exp (-2J..L1t)} /2J..Ll.

This yields for the former expectation in (3.13) that

Eo,x [I t

l(x,oo) (xs) CldXS] = Eo,x [I t

l(x,oo) (xs) Cl (flo - fllXs) dS]

= CIJ.Lot - CIJ.Ll it Eo,x [xt] ds,

and using the norn1al approximation for Xt the expectation inside the integral
can be calculated analytically. For the latter expectation in (3.13) we have,
again using the normal approximation for Xt, that

where <p (x; m, v 2 ) is the density function for a normal variable with mean m
and variance v2 • Concluding we have

rdx) ~ r (x) +Cl (J.Lot - J.LlItEo,x [xt] dS) + ~2it <p (x; ms (x) ,v;) ds.

The integrals are computed numerically.
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3.15.3 Approximation of bond prices

For the expectation of future bond prices we make a local approximation of
In F according to

and with the normal approximation for Xt we can use

The integral can be calculated analytically.

3.16 Appendix. Supplementary graphs
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Figure 3.24.a: Swap rate curves (left) and swap rate volatility curves (right) in
Jan-1996 (crosses), Jul-96 (triangles) and Jan-97 (circles). Swap rates refer to the
beginning of the indicated month. Volatility curves depict the standard deviation
in the swap rate for a given maturity over the six months following the indicated
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Figure 3.24.b: Corresponding item to Figure 3.24.a for the dates Jul-1997- (crosses),
Jan-98 (triangles) and Jul-98 (circles).
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